Blueshift: Breaking Bluetooth Adaptive Frequency Hopping

2023 National Cybersecurity Education Colloquium

Moraine 1&2, 11:30a – 11:55a

September 22, 2023

Faculty: Kun Sun, Student: Tommy Chin and Noah J Korzak
Program Manager: Stephanie Polczynski and Erik Brasile

PROJECT: INSuRE+C
Outline

- Overview
 - Device probing and Adaptive Frequency Hopping
 - How does AFH work and why do we care
 - Relevant studies and related works
- Blueshift
- Real-world experiments
- Preliminary results
- Conclusion
Today’s world has an abundance of Bluetooth Low Energy devices

- **Scenario**
 - You are a Cybersecurity Specialist
 - Tasked to protect a region from threats

- A person brings a device to an area
 - What is the device?
 - What is the device doing?
 - Why should we care?

- What about multiple people?
 - How can one maintain awareness of all the activities?
 - Cost? Scale?
One achieves intent analysis through data collection efforts

- Capturing network packet data often reveals meaningful information
 - Meta data indicating content
 - Fields reflecting source and destination
- BTLE data capture challenges
 - Hard to achieve in practice
 - 3 advertisement and 37 data channels
 - Need a wideband antenna to capture all 40 channels
 - We lose information without a wideband antenna!
Adaptive frequency hopping and the overarching problem

- The method of how BTLE devices hop
 - Defined in the Bluetooth protocol
 - Presents complication in data collection

- BTLE devices pair with one another
 - Establishes key parameters to answer
 - How to hop and when
 - Defines the initial frequency / hop interval
 - Information visible to capture

- Difficult to locate without capturing
Well known studies capture BTLE traffic using an Ubertooth One

- Open-source BTLE packet sniffer
 - Open-source tooling enables following one pair of devices upon observing a connection packet
 - Limited to only one BTLE channel at a time for data collection

- Widely known in BTLE research work

- Retired on December 22, 2022
Relevant studies have attempted to tackle the AFH problem

- Used two Ubertooth One devices
- Leverages machine learning to predict channel map
- Only works for Bluetooth Classic and uses selective frequency jamming to manipulate the BTLE pair's channel map

- Deployed one Ubertooth One device
- Ubertooth One stays on one channel, and predicts channel map based on time between packets
- Misses large amount of key data on other channels

Blueshift breaks collection challenges with prediction

• Blueshift
 – Enumerates all potential hopping values to create a large hop table
 – Achieved through deep study of Bluetooth protocol

• Track devices across multiple channels using a single predictor
 – Single-band antenna designed
 – Reduces the dependency for a wideband antenna
Mapping table enables quick lookup capabilities

• Deep study of Bluetooth protocol enabled creation of a hopping table
 – Utilizes two $2^{16}-1$ hex values to reflect the Access Address and the Counter
 – Follows modern Channel Selection Algorithm #2

• The observation of a BTLE packet
 – Reveals the Access Address
 – Lacks the Counter, Channel Map, and Interval values

• Accuracy increases when missing values are determine

\[
M = \\
\begin{bmatrix}
 h_{\alpha,c} & h_{\alpha,c+1} & \cdots & h_{\alpha,2^{16}-1} \\
 h_{\alpha+1,c} & h_{\alpha+1,c+1} & \cdots & h_{\alpha+1,2^{16}-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 h_{2^{16}-1,c} & h_{2^{16}-1,c+1} & \cdots & h_{2^{16}-1,2^{16}-1}
\end{bmatrix}
\]

$M_{0x4126af2} = [0, 13, 28, 24, 3, \ldots, 24]$
Observing BTLE traffic initializes an orchestration of prediction work

- Identification of the map
 - We know some parts of the AFH
 - Hopping sequence of the BTLE session
 - Potential metadata about the device

- Missing the Connection packet causes potential unknowns to occur
 - Counter value
 - Channel Map
 - Hop Interval

- Some values are necessary to determine for prediction
Reducing environmental noise enables effective data collection results

- Initial testing of lab environment
 - Showcased 746 unique Bluetooth devices
 - Multi-story building has many students and systems

- The team created a faraday cage from a server cabinet
 - Noise reduction from -40 dBm to -89 dBm
 - Observable packets decreased from ~140 to ~10 packets per second
Architecting a testbed enables increase exposure to real-world challenges

- Initiate
- Administer
- Sense
- Collect
- Validate

- Raspberry Pi (x4)
- Ubertooth One (x4)
- USRP N210 (x2)
- Dedicated USRP System (x2)
- BTLE Devices

- Controller

- Faraday Cage

- BTLE Packet Data
GNU Radio Companion enables the creation of ground truth

- Configuration of USRP
 - GNU Radio Companion
 - Enables full BTLE channel coverage
 - Each USRP covers 20 channels

- Data filter from collection
 - Power Squelch removes signal data with a signal strength lower than -35 dBm
 - Rational Resampler adjusts data collection rate to match rate of BTLE data transfer

- Signal data converted to packet format using open-source library

Automation of experiment enables higher volume of data collection

- Initial experiments explored using
 - Android Phone and Govee Lightbulb
 - Simplest device with easy visual feedback

- A clicker application enabled repetitive, automated interaction of a light bulb
 - 49 precisely timed inputs used per 15-minute experiment
 - Enable continuous experiment pending device stability and storage
Overview of Data Collection

- Connecting data with BTLE devices have a high, manual labor requirement.

- We pursued areas to automate to best maximize volume of data:
 - SDRs collect for a minute before device pairing and after device disconnect, guaranteeing entire connection is captured.
 - Lightbulb turned on/off to ensure frequent communication.
 - Experiment loops until user intervention.

This presentation was given at the 2023 National Cybersecurity Education Colloquium.
Prediction and maintaining track of devices

- Observing the connect packet
 - Easy to identify the initial hopping pattern
 - Must continuously keep track of a device connection to identify parameter changes.

- Observing only a data packet
 - Difficult to determine hopping pattern
 - Must collect more samples to make an analysis
 - Three (3) to Four (4) samples enough to quantify a recovery of the work
Public dataset enables quick prototyping of code

- We followed an incremental development approach
 - Deeply studied the Bluetooth protocol
 - Created code that accurately tracks pristine BTLE data
 - Supports both Channel Selection Algorithms

- Validate the functionality of code with public data\(^1\)

- Iterate approach with real-world experiments to finetune system

Prediction accurate using bsniffhub dataset (solid/blue=measure, dashed/orange=predict)

1. https://github.com/homewsn/bsniffhub
Hop interval changes create complication in prediction

- Real-world experiments highlight a secondary challenge
 - Time between hop changes
 - Rate may speed up or slow down

- Reproducing the interval changes difficult to achieve in the real-world
 - Environmental factor critical to mimic
 - Easy to attain through simulation
Environment changes enable frequent modifications to the channel map

• Running multiple experiments
 • Highlights many occurrences where the hop interval changes
 • Speed up
 • Slow down
 – The number of channels available
 • Relatively consistent
 • Environment favored not using some channels
Complexity of AFH presents challenging prediction effort to follow

- Several complex scenarios identified as an outcome of the analysis
 - Ubertooth One misses variable amount of data collection using native libraries when comparing to USRP output
 - Some sessions have long idle periods where a device does not heartbeat or communicate
 - Hop interval times speed up and slowdown at variable rates

- Some prediction points are on track but quickly lose accuracy as session parameter changes
Conclusion

- Implementing methods to break and defeat Adaptive Frequency Hopping
 - Trivial to address through simulation
 - Higher difficulty in real-world scenarios
 - Frequent changes in environmental spaces
 - Higher introduction of noise
 - Data collection processes has high time complexity requirements
 - Manual user intervention needed
 - Reliability of devices sometimes have discrepancies which needs a reboot

- Blueshift presents promising direction to expand and explore research area
 - Enables areas to help address producing an inexpensive mean to track devices at scale
 - Highlights areas to enhance the Bluetooth protocol to increase user privacy
Future Work

• One short paper accepted to highlight our preliminary work
 - CCS Workshop on Moving Target Defense
 - November 26, 2023, Copenhagen, Denmark

• Creating user-based use cases to increase prediction accuracy
 - User connects, disconnects, reconnects, etc.
 - Using a paired device to unpair and re-pair to a different system

• Profiling devices
 - Supports pattern of life detection
 - Classifying data to a device
Thank You! Questions?

Contact us at...
- Tommy Chin, tommy.chin@ieee.org
- Noah Korzak, nkorzak@gmu.edu
- Kun Sun, ksun3@gmu.edu

Check out our other research https://sunlab-gmu.github.io/
Appendix

This presentation was given at the 2023 National Cybersecurity Education Colloquium
Deep dive into automating data collection

Connection Sequence for Lightbulb/Android Phone

- **Idle**
- **Connect and Add Device**
- **Choose Nearby Light**
- **Click Correct Bulb**
- **Select Nearby Device**
- **Click Done**
- **Error Redundancy**
- **Turn Bulb On/Off**
- **Click Settings**
- **Delete Device**
- **Confirm Deletion**

2m 1s / Variable time between experiments

SDR Experiment Overview

- **USRP Python File Created**
- **Start Collection (all SDRs)**
- **Data Collection Ends**
- **Idle**

2m 1s / Variable time between experiments