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INTRODUCTION - BACKGROUND

§ Software becomes the key components in many systems and its complexity has been 
increasing to meet context-dependent requirements
– Unfortunately, as a result, there are many new vulnerabilities and new attack 

surfaces 

– As the least secure component of the digital ecosystem, user errors continue to 
contribute to the cyber incidences

§ Furthermore, we as the citizen of modern societies use and rely on services that run 
by servers and applications

– Smart devices are ubiquitous and are used constantly to connect to all kinds of 
services

§ Unfortunately, they create unprecedented opportunities for malicious actors
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INTRODUCTION - BACKGROUND
§ Perhaps the best way to measure the vulnerabilities in programs is the Common 

Vulnerabilities and Exposures (CVE) list  
– The list contains 202461 (on May 13, 2023)
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INTRODUCTION - BACKGROUND
§ A hope to handle such large numbers of vulnerabilities is that the different types of 

vulnerabilities is much much smaller
– The best source is the Common Weakness Enumeration (CWE), which has 933 of 

weaknesses 



5

INTRODUCTION - BACKGROUND
§ Malicious programs and applications is a serious issue at the global scale
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INTRODUCTION - BACKGROUND
§ There is a big market for security products

– We also install and use them on our computers and devices

§ A lot was spent to deal with cybercrime and the cost will continue to increase

§ Why are there so many malicious programs and applications still?
– Could we cope the malicious programs more effectively?
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CURRENT SITUATION AND CHALLENGES

§ Most of the malware samples are analyzed individually

– The relationships via shared functions are not explored effectively
§ Three commonly used approaches, static analysis, dynamic analysis, symbolic 

execution, and combinations of them are not scalable

– Static analysis methods are not precise, labor-intensive, and not scalable
– Dynamic analysis methods are precise, can be done automatically, but not 

scalable with limited coverage often
– Symbolic execution techniques can handle small programs only due to the state 

explosion problem
• For example, a for statement such as “for (i=0; i<1000; i++) sum+=i;” can have 

21000 different execution branches
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CURRENT SITUATION AND CHALLENGES – CONT.

§ Students often create C or C++ programs for functions so that they can test their 
ideas and generate running cases
– For dynamic analysis, the debugging capabilities in IDA are very helpful as well
– Even though Ghidra offers emulation capabilities, they are available only via APIs 

and most students found them cumbersome to use
§ Overall, we have observed that the current tool set allows our students to learn static 

and dynamic analyses and use them for malware analyses effectively
– The scripting and programming capabilities are very important as well
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CURRENT SITUATION AND CHALLENGES – CONT.

§ However, malware analysis is still dominantly a manual process

§ Given the rapid developments in artificial intelligence and in particular machine 
learning, it is highly desirable to be able to incorporate such advanced capabilities 
into reverse engineering routines

– Some techniques such as symbolic execution have been around for some time 
and recent developments make them more applicable

– Machine learning and deep learning are improving natural language processing, 
object detection, and speech recognition significantly

• Applying these techniques to software reverse engineering could be fruitful
– Graph neural networks are particularly suitable for representing multiple 

relationships in programs

• They could lead to better software reverse engineering tools
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SYMBOLIC EXECUTION

§ Symbolic execution techniques are very appealing conceptually

– The precision and coverage tradeoff for binary program analysis is well understood
– In order to systematically understand a malware sample, symbolically enumerating 

all execution possibilities can be helpful

• However, there is a mismatch between cases analysts expect and cases by 
symbolic execution techniques
– For example, a for loop can generate many different branches by unrolling 

the loop

– But analysts would like to treat that as a loop unless it is vulnerable 
– There are also practical issues when using them to analyze whole binary programs

• For examples, system and library functions cause issues for typical symbolic 
execution routines
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REPRESENTATION LEARNING USING MACHINE LEARNING

§ In recent years, transformer-based large language models such as chatGPT and 
burpGPT have been to be very helpful
– Especially through the API provided by openAI, some of the tasks can be done 

more quickly and there are tools available for some purposes as well 
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REPRESENTATION LEARNING USING MACHINE LEARNING – CONT.

§ Fundamentally, these techniques learn a vector representation for tokens, instructions, 
basic blocks, and functions to facilitate downstream tasks
– Recently we have used metric learning to successfully improve the embeddings
– However, it may not be realistic to expect students in software reverse engineering 

to know such techniques and be able to apply them effectively
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BRIDGING SEMANTIC GAPS AUTOMATICALLY 

§ As analysts and programmers understand programs using meaningful variable and 
function names much better, it seems a good idea to utilize the available source 
code to learn patterns so that lost semantics in stripped binaries can be recovered
– With the recent techniques of graph neural networks to model multiple syntactic 

and semantic relationships between instructions, learned instruction embeddings 
and graph representations will likely lead to substantial improvements in 
automatically recovering human readable variables and function names
• Recent work has demonstrated that function names can be recovered from 

stripped binaries with an F1 score of 0.45
• More interpretable functions could be synthesized based on available input-

output relationships

§ However, they are still not readily useful to analysts 
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SCALABLE IN-DEPTH MALWARE ANALYSIS

§ Clearly in-depth malware analysis is time consuming

– The system has to understand the functions and how the programs work
§ However, as malware samples reuse and share functions with other samples, the 

key to achieve scalability is to reuse the analyses effectively

– In our proposed system, it will be done using a knowledge base
– To find similar functions in the database, we use locality sensitive hashing
– We are developing a system, called INDEMAAS, in-depth malware analysis at 

scale
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LOCALITY-SENSITIVE HASHING

§ Instead of searching for similar 
functions in the semantic 
embedding space, we use 
multiple linear projections to 
produce binary patterns that can 
be used for finding similar 
functions very quickly
– In low dimensional spaces, we 

also use hierarchical lookup 
tables for fast mapping to 
classes
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SCALABLE IN-DEPTH MALWARE ANALYSIS – CONT.

§ We use a deep learning model to learn to summarize functions

– In a way, very similar to what analysts do, the model summarizes the functions in a 
higher level so that the complexities of the programs can be handled effectively
• The key advantage is that we can summarize the functions in parallel from bottom-up

– We use an architecture very similar to IPA-GNN [1]

[1] D. Bieber, et al., “Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks,” NeurIPS, 2020.
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SCALABLE IN-DEPTH MALWARE ANALYSIS – CONT.

§ We use a deep learning model
to learn to summarize and 
execute programs
– In a way, very similar to what 

analysts do, the model 
summarizes the programs in 
a higher level so that the 
complexities of the programs 
can be handled effectively

– For each function, we also
have the different cases
using simulations
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SCALABLE IN-DEPTH MALWARE ANALYSIS – CONT.

§ In INDEMAAS, each function will have a semantic representation learned by the 
deep learning model
– For each function, we also have the different cases using simulations

• Since there are 933 common weaknesses, we map each function to these 
weaknesses as Intezer does but using the MITRE ATT&CK patterns
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SCALABLE IN-DEPTH MALWARE ANALYSIS – CONT.

§ We use a deep learning model to learn to summarize and execute programs

– In a way, very similar to what analysts do, the model summarizes the programs in 
a higher level so that the complexities of the programs can be handled effectively

– For each function, we also have the different cases using simulations
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INTEGRATING WITH INTEZER

§ We are in the process of incorporating our ideas into the Intezer platform
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SUMMARY

§ Achieving in-depth malware analysis at scale is very challenging 

– Based on the key observation that malware samples reuse functions, we build an 
AI-approach to overcome the challenges
• We use deep learning models to learn a semantic representation for each of 

the functions
– We build a knowledge for relationships among different functions
– To index a huge base, we use locality-sensitive hashing
– We train a deep learning model to learn how to summarize functions at a 

higher level to cope with complexities and the state explosion problem 
associated with symbolic execution

• Integrating all the components leads an efficient and effective solution for the 
problem


