=

Bl

Department of
Computer Science

INDEMAAS: AN AI-ENABLED KNOWLEDGE GUIDED FRAMEWORK
FOR REALIZING IN-DEPTH MALWARE ANALYSIS AT SCALE

Xiuwen Liu and Mike Burmester Tathagata Mukherjee
Department of Computer Science Department of Computer Science
Florida State University The University of Alabama

Tallahassee, FL Huntsville, AL

INTRODUCTION - BACKGROUND

= Software becomes the key components in many systems and its complexity has been
iIncreasing to meet context-dependent requirements

— Unfortunately, as a result, there are many new vulnerabilities and new attack
surfaces

— As the least secure component of the digital ecosystem, user errors continue to
contribute to the cyber incidences

= Furthermore, we as the citizen of modern societies use and rely on services that run
by servers and applications

— Smart devices are ubiquitous and are used constantly to connect to all kinds of
services

= Unfortunately, they create unprecedented opportunities for malicious actors

=

el

Department of
Computer Science 2

INTRODUCTION - BACKGROUND

= Perhaps the best way to measure the vulnerabilities in programs is the Common
Vulnerabilities and Exposures (CVE) list

— The list contains 202461 (on May 13, 2023)

Current CVSS Score Distribution For All Vulnerabilities

Distribution of all vulnerabilities by CVSS Scores

|CVSS Score Number Of Vulnerabilities Percentage
687 0.40
| | 1144 0.70
/754 4.60
3-4 8365 4.90
4-5 39997 23.70
5-6 32300 1910
6-7 24932 14.70
7-8 33901 20.00
825 0.50
19199 11.40
Total 169104

Weighted Average CVSS Score: 6.5

Vulnerability Distribution By CVSS Scores

39997

32300 33901

|
24932 |
19199

7754 8365
687 1144 . 825

—]] e—

CVSS Score Ranges

M o-1
M2
| pX]
3-4
4-5
5-6
6-7
M7s
89
Mo-10

N | el

el

Department of
Computer Science

3

INTRODUCTION - BACKGROUND

= A hope to handle such large numbers of vulnerabilities is that the different types of
vulnerabilities is much much smaller

— The best source is the Common Weakness Enumeration (CWE), which has 933 of

weaknesses

KEV | oponge

Rank ID Name Score |Count VS.

(CVEs) 2021

1 CWE-787 |Out-of-bounds Write 64.20 62 0

2 CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 45.97 0
3 CWE-89 |(Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 22.11 7 +3 A

4 CWE-20 |Improper Input Validation 20.63 20 0
5 CWE-125 |Out-of-bounds Read 17.67 1 -2 v
| 6 CWE-78 |Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')| 17.53 32 | -1 v

| 7 [CWE-416 |Use After Free | 1550 [28 | o0

8 CWE-22 |Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.08 19 0

9 CWE-352 |Cross-Site Request Forgery (CSRF) 11.53 1 0

10 CWE-434 |Unrestricted Upload of File with Dangerous Type 9.56 6 0
11 CWE-476 |NULL Pointer Dereference 7.15 0 +4 A
12 CWE-502 |Deserialization of Untrusted Data 6.68 7 +1 A
13 CWE-190 |Integer Overflow or Wraparound 6.53 2 -1 v

| 14 [CWE-287 [Improper Authentication 6.35 4 | o
| 15 | CWE-798 |Use of Hard-coded Credentials 5.66 0 | +1 A
16 CWE-862 [Missing Authorization 5.53 1 +2 A
17 CWE-77 |Improper Neutralization of Special Elements used in a Command (‘Command Injection') 5.42 5 +8 A
18 CWE-306 |Missing Authentication for Critical Function 5.15 6 -7 v
19 CWE-119 |Improper Restriction of Operations within the Bounds of a Memory Buffer 4.85 6 2 v
20 CWE-276 (Incorrect Default Permissions 4.84 0 -1 v
21 CWE-918 |Server-Side Request Forgery (SSRF) 4.27 8 +3 A
| 22 | CWE-362 |Concurrent Execution using Shared Resource with Improper Synchronization ('‘Race Condition') | 3.57 6 | +11 A
23 | CWE-400 |Uncontrolled Resource Consumption | 3.56 2 +4 A
24 CWE-611 |Improper Restriction of XML External Entity Reference 3.38 0 -1 v
25 CWE-94 |Improper Control of Generation of Code ('Code Injection') 3.32 4 +3 A

L= | Department of
% Computer Science 4

INTRODUCTION - BACKGROUND

= Malicious programs and applications is a serious issue at the global scale

Per month:
~ 7,810,678
Per day:
- 256, 789

~ Per second:
3

P’ Last 12 months:
93,728,140

Department of
Computer Science S

=

INTRODUCTION - BACKGROUND

= There is a big market for security products

#2. The worldwide cybersecurity market is estimated to reach up to $300 billion by 2026
The value of the cybersecurity market is growing rapidly. Experts predict that it can easily grow by two or threefold in the

next three years as the demand for cybersecurity services and solutions is growing.

— We also install and use them on our computers and devices

= Alot was spent to deal with cybercrime and the cost will continue to increase

#1. Global expenditure on cybersecurity reached $6 trillion in 2021
According to Cybersecurity Ventures, Cybercrime is expected to cost the entire world $10.5 Trillion annually by 2025. This is

up from $3 Trillion a decade ago, and $6 Trillion in 2021. It will be vital that cybersecurity spending continues to grow in

proportion to this increase.

= Why are there so many malicious programs and applications still?

— Could we cope the malicious programs more effectively?

=

el

Department of
Computer Science

CURRENT SITUATION AND CHALLENGES

= Most of the malware samples are analyzed individually
— The relationships via shared functions are not explored effectively

= Three commonly used approaches, static analysis, dynamic analysis, symbolic
execution, and combinations of them are not scalable

— Static analysis methods are not precise, labor-intensive, and not scalable

— Dynamic analysis methods are precise, can be done automatically, but not
scalable with limited coverage often

— Symbolic execution techniques can handle small programs only due to the state
explosion problem

* For example, a for statement such as “for (i=0; i<1000; i++) sum+=i;” can have
21000 different execution branches

=

el

Department of
Computer Science /

CURRENT SITUATION AND CHALLENGES — CONT.

» Students often create C or C++ programs for functions so that they can test their
ideas and generate running cases

— For dynamic analysis, the debugging capabilities in IDA are very helpful as well

— Even though Ghidra offers emulation capabilities, they are available only via APls
and most students found them cumbersome to use

= Qverall, we have observed that the current tool set allows our students to learn static
and dynamic analyses and use them for malware analyses effectively

— The scripting and programming capabilities are very important as well

=

el

Department of
Computer Science 8

CURRENT SITUATION AND CHALLENGES — CONT.

= However, malware analysis is still dominantly a manual process

= Given the rapid developments in artificial intelligence and in particular machine
learning, it is highly desirable to be able to incorporate such advanced capabilities
iInto reverse engineering routines

— Some techniques such as symbolic execution have been around for some time
and recent developments make them more applicable

— Machine learning and deep learning are improving natural language processing,
object detection, and speech recognition significantly

* Applying these techniques to software reverse engineering could be fruitful

— Graph neural networks are particularly suitable for representing multiple
relationships in programs

* They could lead to better software reverse engineering tools

=

el

Department of
Computer Science 9

SYMBOLIC EXECUTION

= Symbolic execution techniques are very appealing conceptually
— The precision and coverage tradeoff for binary program analysis is well understood

— In order to systematically understand a malware sample, symbolically enumerating
all execution possibilities can be helpful

* However, there is a mismatch between cases analysts expect and cases by
symbolic execution techniques

— For example, a for loop can generate many different branches by unrolling
the loop

— But analysts would like to treat that as a loop unless it is vulnerable
— There are also practical issues when using them to analyze whole binary programs

* For examples, system and library functions cause issues for typical symbolic

execution routines
=

el

Department of
Computer Science

10

REPRESENTATION LEARNING USING MACHINE LEARNING

* |n recent years, transformer-based large language models such as chatGPT and
burpGPT have been to be very helpful

— Especially through the API provided by openAl, some of the tasks can be done
more quickly and there are tools available for some purposes as well

import os
import openai
openai.api_key = os.getenv("OPENAI_API_KEY")

completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",

messages=|[
{"role": "user", "content": "Tell the world about the ChatGPT API 1in the <

]
)

print(completion.choices[0].message.content)

Like many modern tools, ChatGPT has an API that allows third-party applications to query the Al and receive replies using a script instead
of the online user interface. Some individuals have already used this API to create impressive open-source analysis tools that can make
cybersecurity researcher’s jobs a lot easier.

Notable examples of such tools are Gepetto and GPT-WPRE, which add meaningful comments to code decompiled using IDA and Ghidra,
respectively. Another helpful tool is |ATelligence, a script that extracts the content of the Import Address Table (IAT) from PE files and
adds information about MITRE ATT&CK techniques that can be implemented using the imported libraries. These are mere examples of
the potential ChatGPT has as an analysis tool, and with some thought and effort this Al might even be able to integrate into SIEM systems
and do much of the work currently done by tier-1 analysts. ,
"] | computer Science

11

REPRESENTATION LEARNING USING MACHINE LEARNING — CONT.

* Fundamentally, these techniques learn a vector representation for tokens, instructions,
basic blocks, and functions to facilitate downstream tasks

— Recently we have used metric learning to successfully improve the embeddings

— However, it may not be realistic to expect students in software reverse engineering
to know such techniques and be able to apply them effectively

Training Loss Testing Loss
0.4 1 —— average loss 80
0.6 - e max loss / /
—min loss _
0.3 60
v 0.4 4 v
8 g 40 -
0.2 - 027
20 A
0.01_ i . i ; 0.14, i . i i : o
0 5 10 15 20 25 0 5 10 15 20 25
Epochs Epochs -
Training Accuracy Testing Accuracy
100 —40
98 -
> 98 . —60
g i 0
96 -
—— EVerage accuracy T T T T T T T T T
94 - max accuracy —80 —60 —40 =20 0 20 40 60 80
99 - === ITEh RECUracy « MOV « CALL . JMP « CSET + UNARY
0 5 v 15 20 25 0 5 0 15 20 25 e BNOP o CMP * SHIFT cmov il
Epochs Epochs a—

Department of
Computer Science

el

12

BRIDGING SEMANTIC GAPS AUTOMATICALLY

= As analysts and programmers understand programs using meaningful variable and
function names much better, it seems a good idea to utilize the available source
code to learn patterns so that lost semantics in stripped binaries can be recovered

— With the recent techniques of graph neural networks to model multiple syntactic
and semantic relationships between instructions, learned instruction embeddings
and graph representations will likely lead to substantial improvements in
automatically recovering human readable variables and function names

 Recent work has demonstrated that function names can be recovered from
stripped binaries with an F1 score of 0.45

* More interpretable functions could be synthesized based on available input-
output relationships

= However, they are still not readily useful to analysts

=

el

Department of
Computer Science 13

SCALABLE IN-DEPTH MALWARE ANALY SIS

» Clearly in-depth malware analysis is time consuming
— The system has to understand the functions and how the programs work

= However, as malware samples reuse and share functions with other samples, the
key to achieve scalability is to reuse the analyses effectively

— In our proposed system, it will be done using a knowledge base
— To find similar functions in the database, we use locality sensitive hashing

— We are developing a system, called INDEMAAS, in-depth malware analysis at
scale

=

el

Department of
Computer Science 14

LOCALITY-SENSITIVE HASHING

= Instead of searching for similar 0 4, |

functions in the semantic T
embedding space, we use I ”
multiple linear projections to ’/ 7
produce binary patterns that can o * @@ o 101
be used for finding similar 4 @/’
functions very quickly S < ¢ | " @
— In low dimensional spaces, we . 7 \® I ® o

also use hierarchical lookup \ ° o N \°

tables for fast mapping to i & I \ K,

classes \ ’

\Q‘b
I S

Department of
Computer Science 15

el

SCALABLE IN-DEPTH MALWARE ANALYSIS — CONT.

= We use a deep learning model to learn to summarize functions

— In a way, very similar to what analysts do, the model summarizes the functions in a
higher level so that the complexities of the programs can be handled effectively

« The key advantage is that we can summarize the functions in parallel from bottom-up

— We use an architecture very similar to IPA-GNN [1]

non pahe, Y % ph
ce-;e @ n 06
©e-(}-@» O (¥ +00
®O0-(}-0 O 0®

Exewéute Branch Aggregate

[1] D. Bieber, et al., “Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks,” NeurIPS, 2020.
=

el

Department of
Computer Science 16

SCALABLE IN-DEPTH MALWARE ANALYSIS — CONT.

= We use a deep learning model
to learn to summarize and
execute programs

— |In a way, very similar to what
analysts do, the model
summarizes the programs in
a higher level so that the
complexities of the programs
can be handled effectively

— For each function, we also
have the different cases
using simulations

int if_else(int a, int b,

int result;
if (a > b) {

}

else {

}

return result;

result = a + b;

result = ¢ - a;

int c¢) {

int result = 0;

switch (a) {

case 1:
result = b;
break;

case 2:
result = c;
break;

case 3:
result = d;
break;

case 4:
result = b - c;
break;

case 5:
result = ¢ - d;
break;

case 6:
result = d - b;
break;

case 7:
result = b + c;
break;

case 8:
result = ¢ + d;
break;

case 9:
result = d + b;
break;

case 10:
result = b % c;
break;

case 11:
result = ¢ x d;
break;

case 12:
result = d x b;
break;

}

return result;

N |

el

int switch_large(int a, int b, int c, int d) {

Department of

Computer Science

17

SCALABLE IN-DEPTI

MALWA

= |n INDEMAAS, each function will

deep learning model

RE ANALY SIS — CONT.

nave a semantic representation learned by the

— For each function, we also have the different cases using simulations

» Since there are 933 common weaknesses, we map each function to these
weaknesses as Intezer does but using the MITRE ATT&CK patterns

MITRE ATT&CK

Execution::Exploitation for Client Execution [T120

Execution::Exploitation for Client Execution [T120

Technique

Severity

Department of
Computer Science 18

SCALABLE IN-DEPTH MALWARE ANALYSIS — CONT.

= We use a deep learning model to learn to summarize and execute programs

— In a way, very similar to what analysts do, the model summarizes the programs in
a higher level so that the complexities of the programs can be handled effectively

— For each function, we also have the different cases using simulations

int while_loop(int a, int b) {
int result = 0;
while (a < b) {
b—-;
a++;
result++;

}

return result;

s

=

el

Department of
Computer Science 19

INTEGRATING WITH INTEZER

= We are in the process of incorporating our ideas into the Intezer platform

INTEZER ANALYZE Home Integrations Plugins v Scan joe schmoe @

Your trial ends in 13 days. Go premium, starting at $200/month Pricing

:"5117é$6da2d4b232acc28aac367345a428f73aa67430f5da1ad436ddc48€ba33

Actions Vv

.NET
This file contains code from malicious software, therefore it's very
likely that it's malicious.

Genetic Analysis Behavior Detect & Hunt = BETA §S> Extended Dynamic Execution

Original File Genetic Summary Strings (1.596) Capabilities (3)

31172a6da2d4b232acc28aac3e7345a428f73aa67430f5dalad436ddc48eba33 pe net 386 obfuscated probably packed Actions Vv

Unique

JNKNown

File Metadata

Size
SHA256
MD5
Product
File Type
SHA1

Dropped Files
Ssdeep

L= |Department of
Computer Science

SUMMARY

= Achieving in-depth malware analysis at scale is very challenging

— Based on the key observation that malware samples reuse functions, we build an
Al-approach to overcome the challenges

* We use deep learning models to learn a semantic representation for each of
the functions

— We build a knowledge for relationships among different functions

— To index a huge base, we use locality-sensitive hashing

— We train a deep learning model to learn how to summarize functions at a
higher level to cope with complexities and the state explosion problem
associated with symbolic execution

* Integrating all the components leads an efficient and effective solution for the
problem

=

el

Department of
Computer Science 21

