
Architecture-Driven Penetration Testing against
an Identity Access Management (IAM) System

CAE Tech Talk
Thursday, September 201, 2018

Dr. Sam Chung, Professor/Director
Information Security Program

Center for Information Assurance Education
Technology Institute

Worked with
Sky Moon, MS

Expedia.com, Bellevue, WA 98004

• Barbara Endicott-Popovsky, Ph.D.
• Center for Info. Assurance & Cybersecurity

• University of Washington, Bothell, WA

• Published at ACM SIGITE/ RIIT 2016

1

Agenda

2

• Motivation

• Problem Statement

• Background

• Previous Work

• Approach

• Architecture

• Architecture Modeling

• Vulnerabilities

• Demo

• Countermeasures

• Conclusion

• Future Work

Motivation – to make software attacks
difficult

3

• Do not focus on blindly testing
security functionality.

• Focus on improving software
architecture.

Motivation – Why Architecture?
• One half of all security problems come from design flaws

• Performing a risk analysis at the design level is important.

(Verdon, D., and McGraw, G. 2004. Risk Analysis in Software Design. IEEE
Security & Privacy, 2, 4 (Aug. 2004), 32-37.
IEEE Center for Secure Design, Avoiding the Top 10 Software Security Design
Flaws, 2015)

4

Problems

• Software security means the protection of software
after it has been built & deployed.

• Challenges:
• How can we discover architectural design and abuse cases

from a deployed system?

• Based upon the architecture and abuse cases, how can we
identify vulnerabilities and propose countermeasures for
the deployed system?

5

Case Study

• A telecommunication company in Washington had a
plan to discover vulnerabilities of their Identity Assess
Management (IAM) system before release.

• A question from a Vice President
• How can vulnerabilities of the newly developed IAM system

be identified and related vulnerabilities be mitigated?

6

Background

• Identity Access Management (IAM)

• Software Testing vs. Penetration Testing

8

Identity Access Management (IAM)
• Based on OAuth 2.0.

8

User Agent
(Demo-App-

MyFace
Mobile App)

Client Server
(https://pol.portal.iam.msg.lab.t-

mobile.com/primary/dashboardPage)

Authorization Server
(https://pol.portal.iam.msg.lab.t-
mobile.com/identity-provider/)

1

2

3
4

6

7

8

Access Token
9

User Profile

5

10
Access Token

Identity Access Management (IAM)

• “A framework for business processes that facilitates
the management of electronic identities.”
(Rouse, M. 2015. Identity Access Management (IAM) System)

• IAM will be necessary in the future for managing data
security of Bring-Your-Own-Device (BYOD) or Cloud
Computing
Cser A. and Maxim, M. 2016. IAM is the future for managing data security,
(Mar. 2016), ComputerWeekly.com

10

Software Testing vs. Penetration Testing

• Software Testing
• A normal user’s perspective

• No approval from the test
requesters

• Find the absence of a
specified behavior of a
given insecure legacy
system.

11

• Penetration Testing

o An abnormal user’s

perspective

o Approval from the test

requesters

o Find the absence of an

unspecified behavior of a

given insecure legacy

system.

Approaches
• Our Target : “Access Token”

11

Client Server
(https://pol.portal.iam.msg.lab.t-

mobile.com/primary/dashboardPage)

Authorization Server
(https://pol.portal.iam.msg.lab.t-
mobile.com/identity-provider/)

1

2

3
4

6

7

8

Access Token
9

User Profile

5

10
User Agent

(Demo-App-
MyFace

Mobile App)

Access Token

Previous Work – Architectural Risk Analysis

• To discover software design flaws and abuse cases
based upon those flaws in software security:

• Arkin B., Stender, S., and McGraw, G. 2005. Software Penetration
Testing, IEEE Security & Privacy, 3, 1, (Mar. 2005)

• McGraw, Software Security. IEEE Security & Privacy, 2, 2 (Apr. 2004),
80-83.

• Potter, B., and McGraw, G. 2004. Software Security Testing, IEEE
Security & Privacy, 2, 5 (Oct. 2004), 81-85.

• Thomson, H. H. 2005. Application Penetration Testing, IEEE Security &
Privacy, 3, 1 (Feb. 2005), 66-69

13

Previous Work

• Although the importance of architectural risk analysis
has been proposed a decade ago, those articles found
focus on using architecture for risk analysis, as opposed
to discovering the architecture of a given insecure
legacy system.

• Borrow the approach from software reengineering.

14

Approach - Architecture-Driven, Penetration
Testing Methodology

• An reengineer an insecure legacy system to a secure
target system

• by discovering use cases for normal users and abuse cases
for hackers

• through a reverse engineering process which identifies
vulnerabilities based upon the abuse cases, and

• proposes countermeasures that will be used through a
forward engineering process.

15

Software Architecture

• The architecture of a given insecure
legacy system will be the main
information for penetration testing.

• Through the reverse engineering process,
the architecture of the legacy system is
re-documented into a visual model that
explains physical/logical and
static/dynamic properties of the system.

16

Software
System

Static

Dynamic

Logical Physical

4+1 View Model of Architecture
(Kruchten, IEEE Software, 1995)

18

5W1H Re-Doc
(Chung et al., IEEE SOCA 2009)

19

Static

Dynamic

Physical Logical

DP

Deployment View

(Deployment)

Implementation

View

(Component,

Package)

Design View

(Class, Package,

Activity, State

Machine)

Process View

(Sequence)

Use Case View

(Use Case)

IP SDP

DDP AP

Sys Admin Programmer Designer

Designer Analyst

Spoofing Identity Attack

• Is the spoofing identity attack possible?
• Conditionally, Yes.

18

Approaches
• Detailed strategies

19

User Agent
(Demo-App-

MyFace
Mobile App)

Client Server
(https://pol.portal.iam.msg.lab.t-

mobile.com/primary/dashboardPage)

Authorization Server
(https://pol.portal.iam.msg.lab.t-
mobile.com/identity-provider/)

6

7

Access Token

(A) Man in the Middle
Attack

(B) Spoofing Attack via
Software Architecture

Analysis

(C) Privilege Escalation
in Android Platform

(D) Server Reconnaissance

Software Architecture Analysis of Demo-App-MyFace:
Fetching an Access Token

20

21

Software Architecture Analysis of Demo-App-MyFace:
Fetch an Access Token (Continued)

22

23

24

Android Interface Definition Language
(AIDL)

• Used for data exchange between iam-helper used in
Demo-App-MyFace and Device Agent

25

Deme-App-
MyFace

IAM-
helper

Device
Agent

Authorization
Server

(https://pol.portal.iam.
msg.lab.t-

mobile.com/identity-
provider/)

Software Architecture Analysis of Demo-App-MyFace: Storing an
Access Token with ‘SharedPreferences’
into a XML File

26

Two Possibly Vulnerable Points in the
Demo-App-MyFace & iam-helper Library

• AIDL connection between the Demo-App-MyFace and
Device Agent

• The access token stored by the SharedPreferences
(It is unsecure).

27

The Access Token is Stored Using
the SharedPreferences

28

Shared Preferences
• Store private primitive data in key-value pairs into a

XML file.

29

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>

<string name=“KEY">VALUE</string>
</map>

{Package name}_preferences.xml

Spoofing Identity Attack

30

Demo-App-

MyFace

com.tmobile.tm

oid.demoapps.

myface_prefer

ences_xml

Attacker

Store Access

Token

Copy Access

Token

Spoofing Identity

Attack

Demo

31

OpenID.WMV

Countermeasures

• We successfully obtained a user profile from the
resource server using the access token extracted from
the Android file system.

• For each identified vulnerability for Android app and
server endpoints, we recommend two reliable
countermeasures, with references to RFC 6819, for the
Android app and the server endpoint vulnerabilities,
respectively (OAuth, 2016).

35

Countermeasures
• The following countermeasures are proposed for the Android

app vulnerabilities:
• Do not log the access token retrieval part (RFC6819 Section 4.6.7).

Accidently, developers of the ‘iam-helper’ library did not remove the
logs for the access token retrieval.

• Use Authorization headers or POST parameters instead of URI request
parameters (RFC 6819 Section 5.4.1) - “Authorization headers are
recognized and specially treated by HTTP proxies and servers. Thus,
the usage of such headers for sending access tokens to resource
servers reduces the likelihood of leakage or unintended storage of
authenticated requests in general, and especially Authorization
headers.”

• …

36

Countermeasures (Continued)
• The following countermeasures are proposed for the Android app

vulnerabilities:
• Keep the access token in transient memory and limit grants (RFC6819 Section

5.1.6). The access token should not be stored in a physical file system. There
may be a way to get data even from transient memory, but it would be much
more difficult.

• Keep the access token in private memory or apply the same protection
means as for refresh tokens (RFC6819 Section 5.2.2). We also need to store
the refresh token in private memory for the refresh token. Do not store it in a
physical file system.

• Limit the access token’s scope (RFC6819 Section 5.1.5.1). It is better to limit
the privilege of the access token, if you implemented the privilege
mechanism.

• Keep the access token’s lifetime short (RFC6819 Section 5.1.5.3.) The shorter
the lifetime, the more secure your system. Currently the lifetime is one hour.

37

Countermeasures (Continued)

• A countermeasure proposed for the server endpoints vulnerability
follows:

• Insert a blocking mechanism (i.e., blocking a resource request from the same
IP address, if it fails more than 3 times within a time interval) to prevent a
brute-force attack.

38

Conclusions
• In order to discover architectural design and abuse cases from a

deployed insecure legacy system, we borrowed ideas from
software reengineering: we consider a given system as a legacy
system that may have security vulnerabilities, reverse engineer
the given legacy system to identify possible vulnerabilities, and
then propose countermeasures for a target system that won’t
have those vulnerabilities.

• We apply a reverse engineering methodology called 5W1H Re-
Doc to a given legacy system and discover the system
architecture from the hacker’s view.

39

Discussion

• Spoofing Identity attack is possible if and only if an attacker has a
root permission.

• Do not store the access token into a shared human readable XML file.

• Question:
Why are you storing the access token in ‘Demo-App-MyFace’ into a
shared XML file?

37

Future Work

• A promising future for architecture-driven penetration
testing

• To help a security engineer identify vulnerabilities from
nothing (black-box penetration testing) to architecture
(white-box penetration testing)

• To prepare for countermeasures against identified
vulnerabilities by considering both physical and cyber
properties with multiple and hierarchical architectural
views.

41

41

