
A User-Oriented Approach and Tool for Security 
and Privacy Protection on the Web

Phu H. Phung
Intelligent System Security Lab

https://isseclab-udayton.github.io
Department of Computer Science

October 21, 2021

https://isseclab-udayton.github.io


The foundation of the Web
• Based on the HTTP protocol
– Regardless the Web technologies 

HTTP Request

HTTP Response
Web Browser

1



JavaScript capabilities – in browsers

• Interact with users

• Modify webpages

• Read/write local data, e.g., cookies

• Send/receive data over the network

2



In-Browser JavaScript Security Review
• JavaScript code is executed in Web Browsers (in a JavaScript Engine –

Interpreter) under a “sandbox” environment
– No direct file access, restricted network access

• JavaScript code is enforced by Same-Origin Policy (SOP)
– Can only access (read/write) the properties of webpages from the same domain, 

protocol, and port (that form the origin)
• E.g.: Code from https://ad.com CANNOT access data of https://mysite.com in the same browser 

• Content Security Policy (CSP) is an additional layer of protection to prevent 
attacks such as Cross-Site Scripting (XSS) and data injection attacks

3

https://ad.com/
https://ebay.com/


Limitations of SOP and CSP

• Still based on the trustworthy, i.e., should be whitelisted in CSP 
– Third-party code loaded from external source has the same origin policy 

as the hosting page

<script src=‘ ’>
</script>

https://mysite.com
ad.com

Part of the webpage 
and can access 

everything in the page

May be changed 
or compromised

Website owners 
have no control on 
third-party 
JavaScript code

4



A Webpage example with third-party JavaScript

• Contains internal script code and includes external code 
– External/third-party code is normally trusted and included into 

webpages by the host/developer

5

“88.45% of the Alexa top 10,000 
web sites included at least one 

external JavaScript code” 
[Nikiforakis et al, CCS’12]



Third-party JavaScript Problems

6

Next day

Trackers

Searched flights 
to Chicago

Third-party JavaScript

Privacy Leakage



A Real Attack Example under SOP and CSP 

• Attacks still happen with SOP and CSP security mechanisms. 
Example: A real attack on reuters.com

Third-party JavaScript trusted 
and included by Reuters.com 7



Third-party JavaScript Security

8

JavaScript Security Expert

"The most reliable, cost effective method to 
inject evil code is to buy an ad"



A Research Attack

9

Two ad networks

Browsers

Modify ad content 
after approval to add 
malicious JavaScript 

code

‘Million Browser Botnet’

WhiteHat SECURITY 

Pay to display the ad to 
hundreds of thousands users

DDoS attack
(Distributed Denial of Service) 



The problem

• How to ensure that JavaScript code, either from first-party or third-
party does not perform malicious actions on users’ devices?

10



Existing solutions and open challenges

• Short-term: all-or-nothing approach
– Browser extension blockers
– In-browser blockers

• Long-term: no formal mechanisms to ensure the enforcement
– Do-Not-Track
– Privacy by Design
– W3C Platform for Privacy Preferences Project
– Regulations

• European Union’s General Data Protection Regulation (GDPR)
• The U.S. State Privacy Laws

• More open challenges
– Few prior work consider the issues of the same-origin policy, e.g., third-party code is 

malicious  or compromised 
– Users has no or little control on their data from an end device
– There is no formal assurance mechanism to guarantee that agreements/rules are enforced 

11



Concerns and Dilemma of Web Users  

• Malicious/vulnerable websites exists and can compromise users’ privacy and 
security, e.g., the Reuters.com example

• Citizens trust the big companies to not misuse their data 1,2

• Several prior studies  showed  that portions of  users are  willing to  share 
their  data to  receive target  ads, i.e.,  they do not want to block ads or 
trackers completely 3,4,5

• In some other studies, a big crowd desires advanced methods to control 
their footprint 6,7

1 https://repository.upenn.edu/asc_papers/526
2 https://doi.org/10.1016/j.ijhcs.2020.102498
3 http://dl.acm.org/citation.cfm?doid=2162081.2162084
4 https://www.usenix.org/conference/soups2015/proceedings/presentation/chanchary
5 https://dl.acm.org/doi/10.1145/2335356.2335362
6 https://dl.acm.org/doi/10.1145/2501604.2501612
7 https://dl.acm.org/doi/10.1145/2501604.2501611 12

https://repository.upenn.edu/asc_papers/526
https://doi.org/10.1016/j.ijhcs.2020.102498
http://dl.acm.org/citation.cfm?doid=2162081.2162084
https://www.usenix.org/conference/soups2015/proceedings/presentation/chanchary
https://dl.acm.org/doi/10.1145/2335356.2335362
https://dl.acm.org/doi/10.1145/2501604.2501612
https://dl.acm.org/doi/10.1145/2501604.2501611


Our User-centric and Code-Origin Policy Approach

• Place a security reference monitor at runtime to mediate security 
and privacy relevant behaviors/actions 
– Trace the origin of the caller to actions/APIs, i.e., the code-origin
– Basic policies as agreements/rules are defined by the developer/provider 
• Enforced at runtime and can be customized the end users
• With formal assurance 

13

Developer

Code-origin
policy spec.

<customize>

<develop>

3rd-party code

<include>

Multi-party web 
with code-origin policy 

In-browser 
runtime monitor 

with policy 
editing UI <edit>

<execute >



Code-Origin Runtime Reference Monitor

• Each relevant API call is wrapped with a monitor, based on the self-
protecting JavaScript approach
– Will check with the policy engine
• Inspect the call stack for the origin of the code

– Apply policy for that particular origin

14

Policy Engine Code-origin 
Policies

JavaScript API call

JavaScript execution 
environment

Runtime Reference Monitor



Lightweight Self-Protecting JavaScript
[Phung et al., ASIACCS 2009]

• Provide a behavioral sandbox to control JavaScript execution

15

Behavioral sandbox as a 
JavaScript library

A protected webpage

Inject into protected webpages  

Do not modify browsers

Do not modify the original JavaScript 
code

Do not limit to any language subset 

[Phung et al., ASIACCS 2009]  Phung, P. H., Sands, D., and Chudnov, A.,  “Lightweight Self-protecting JavaScript,” in 
Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, ASIACCS 
2009, Sydney, Australia, pp. 47–60, ACM, March 2009. DOI: https://doi.org/10.1145/1533057.1533067

https://doi.org/10.1145/1533057.1533067


An Attack Example

16

window.alert(‘Hi!’);



Challenges in JavaScript Security

• Code obfuscation

17

alert(‘Hi!’);

var abcxyz = window.alert;
abcxyz(‘Hi!’);

%61%6C%65%72%74%28%27%58%53%53%27%29%3B%0A%0A



Challenges in JavaScript Security

• Dynamic code generation

18

<script> 
document.write(‘<scr’);
document.write(‘ipt> malic’);
var i= 1;
document.write(‘ious code; </sc’);
document.write(‘ript>’);
</script> 

<script> malicious code; </script>



Wrapping security-relevant APIs

19

window.alert(‘Hi!’);

original_alert=window.alert;
window.alert = function(){

}

if (policyCheck(..))
execute(original_alert,..);

else{..}

1. Keep the original reference

2. Redefine the reference 

3. Check policy to control 
the execution

Inject Self-Protecting JavaScript 
code before any other JavaScript 

code to monitor them  



Self-Protecting JavaScript Deployment on Server-side

20

/*Self-Protecting JavaScript code
within an anonymous function 
to protect itself from tamper-proofing */

(function(){

})();

Customized by the website owner 

selfprotectingJS.js

Included as the first script 
in the website



Self-Protecting JavaScript Deployment

<html> 
<head>

<script src=“selfprotectingJS.js"></script> 
<title>Self-protecting JavaScript </title>
<meta content=…> <style>…</style>
<script>…</script>
<!-- more heading setting -->

</head> 
<body> 

<script type="text/javascript"> 
alert(‘Hi!’);

</script>
<!-- the content of page -->

</body>
</html>  

Run first in the page 
to control other 

code

The original code is 
unmodified

The self-protecting code is loaded and 
run in browsers, but can be included 
anywhere between browser and web 

server (at server-side, web proxy, 
browser extensions, or in browsers) 

21



Self-Protecting JavaScript Summary 

• Advantages
– Can enforce runtime behavioral policies without modifying the browser or the 

original JavaScript code. Policy examples:
• Limit the number of alerts to 2, of dynamic images to 1
• Do not allow sending after reading sensitive information
• Only allow links in a whitelist

• Limitations
– Follow the same-origin policy, cannot distinguish where the actual code comes from
– Depend on developers 

• End-users can only rely on developers 

• Motivation:
– How to define and enforce multiple party policies?

22



Code-Origin Policy Examples
• Grant access to APIs based on code-origin, e.g.,:

– "trusted" code-origin can have full access to all resources
– "local" code-origin l can have access to resources A, B
– "remote1" code-origin can have access to resources C
– "remote2" code-origin can have access to resources D

• More Fine-grained Policy Patterns
– Resource bounds Policy 

• Limit the number of accesses to a resource
– E.g.,: limit the number of Ajax request from a particular code-origin  

– Whitelist Policies 
• A resource access is allowed only under some conditions

– E.g.,: allow data send to some predefined receipts 
– History-based Policies 

• Policies depending on the previous execution status
– E.g.,: no sending after user data is read for a particular code-origin

23



User centric and Code-origin policies in Browsers
MyWebGuard [Hiremath et al., FDSE 2019, Phung et al., SNCS 2020]

• A mechanism at end-users side, e.g., 
in-browser or browser-extension 
– Can monitor JavaScript code behaviors 
• Enforce policies for each code origin, e.g., where the 

code come from
– Do not need any new APIs

24

[Hiremath et al., FDSE 2019]  Hiremath,  P.  N.,  Armentrout,  J.,  Vu,  S.,  Nguyen,  T.  N.,  Tran,  M.  Q.,  and  Phung,  P.  H.  (2019). MyWebGuard:  Toward a 
User-Oriented Tool for Security and Privacy Protection on the Web.  In Proceedings  of  the  6th International Conference on Future Data and Security 
Engineering 2019 (FDSE 2019), volume  11814  of Lecture Notes in Computer Science (LNCS). Springer Verlag.

[Phung et al., SNCS 2020] Phung, P. H., Pham. H. D., Armentrout,  J., Panchakshari N. H. and Tran,  M.  Q.. “A User-Oriented Approach and Tool for Security 
and Privacy Protection on the Web.” SN Comput. Sci. 1 (2020): 222.



MyWebGuard: code origin

• Use call stack at in the monitor (at runtime) to identify where a 
behavior comes from:
var callstack = new Error().stack;
var code_origin = getCodeOrigin(callstack);

• Enforce code origin-based policy for any websites
– Allow or disallow an action based on
• code origin
• code behaviors
• User choice

25



A Code-Origin Policy 
implementation example in MyWebGuard

• Monitoring cookie reading:

26

1. Monitor an action 
and get its real origin 
when the action is called

2. Check the policy
Allow or disallow the
action based on stateful
policies 



MyWebGuard Policy Examples 

• Monitor and mark property read (data sources) for each code 
origin

• document.getElement*, localStorage.getItem, document.cookie, 
window.history, navigator.geolocation.getCurrentPosition …

• Monitor data channels (sinks) sent from the browser
– HTTP requests : Object of Frame, IFrame, Image, Script, Form, 
Ajax, WebSocket
• General policy: no send after reading for each code origin

– Ask users if needed

27



MyWebGuard User Interface

• Users can customize
the policies further
– Based on

personal needs

28



MyWebGuard Evaluation

• Can detect data/privacy leak channels
– Leading tools, e.g., uBlock Origin, Ghostery or 

Brave browser ignore 

• Allow users to decide if a suspicious 
action is detected but not defined in the 
leak channels

• Functional with popular websites 

29



● We tested MyWebGuard with both Chromium and Brave 
browsers (on Ubuntu 18.04.2 LTS) on real websites
○ The overheads are not noticeable as

shown in the graph 

30

Runtime Evaluation



Microbenchmark of MyWebGuard on Chromium

31



Microbenchmark of MyWebGuard on Brave

32



Code-Origin Policy Long-term vision
• Developers/Providers define formal privacy agreements in code-

origin policy at the development phase 
– Tools will generate certificate together with code
• The base system have a runtime monitor and verifier to provide assurance for 

policy enforcement
• User can customize policies

33



The history and 
evolution of the Web

Source: Fabric Ventures

34

Code-Origin Policy



Open challenges

• Usability of code-origin policies
– Need user studies and UX design 

• Encode privacy regulations into code-origin policies

• Certificate generation and verification 

• Integrate this code-origin policies and formal assurance into the 
browser

35



On-going and Future Work
• Student theses/work to be submitted for publications
– Sunkaralakunta Venkatarama Reddy, Rakesh. A User-Centric Security Policy 

Enforcement Framework for Hybrid Mobile Applications, Master thesis, 2019. 
Online: http://rave.ohiolink.edu/etdc/view?acc_num=dayton1564744609523447

– Rowland, Zachary S.. A Study on Formal Verification for JavaScript Software, 
Honors Thesis, 2021. Online: https://ecommons.udayton.edu/uhp_theses/334/

– Nicholson, Timothy and Oei, James. A study of privacy laws and implementing 
them in MyWebGuard, Undergraduate Summer Research 2021  

• Student thesis to be defended
– Bishop, Douglas. User-Centric Security and Privacy Protection In Browser.

Master thesis, expected to defend in December 2021.

36

http://rave.ohiolink.edu/etdc/view?acc_num=dayton1564744609523447
https://ecommons.udayton.edu/uhp_theses/334/


Thank you

Phu H. Phung
Intelligent System Security Lab

Department of Computer Science
University of Dayton

https://isseclab-udayton.github.io
phu@udayton.edu

https://isseclab-udayton.github.io
mailto:phu@udayton.edu

