

Attribute-based Encryption Scheme for Secure Multi-group Data Sharing in Cloud Md. Azhar Islam and Sanjay Madria, Department of Computer Science (In IEEE Transactions on Services Computing,, 2022)

Problem Statement

- When data is stored in cloud or untrusted remote server, it is very challenging to share that data securely if multiple groups of user exist.
- Designing a data sharing scheme in such a scenario needs to achieve following goals:
- Scheme should be scalable with number of user
- Member leaving or new member joining cost should be minimal
- Ensures Forward and Backward Secrecy
- Group level data isolation
- Cross-group data sharing
- Store and share data securely within group members using existing untrusted public cloud
- Fine grained access control in shared data
- Prevent collision attack

Challenges

- Handle membership change event without affecting keys of currently active users
- Enable on demand cross-group data sharing at file level granularity without affecting all files
- Preventing key-escrow problem

Threat Model

- Public Cloud will try to learn plaintext from stored cypher-text
- Member of one group with same attributes should not be able decrypt data of other group
- A compromised user other than the file owner will try to modify access policy of the file
- Multiple users may collude with each other and try to decrypt cypher text that can not be decrypted individually
- Revoked user may collude with cloud to decrypt data
- Assumption:
- Cloud is semi-trusted that means it follows the protocols
- User of one group does not share his TGDH key tree secret key with members of other groups

Scheme	Security	Model	Outsourced	Verifiability	Revocation	Unlimited	Multi-	Coll
	assumption		Decryption			joining	group	resi
DASS [8]	Decisional PB-	Standard	X	×	1	X	×	
	DHE							
Hur-I [13]	Generic Group	RO	×	×	1	X	X	
Hur-II [7]	Generic Group	RO	×	×	1	\checkmark	X	
PIRATTE [6]	Generic Group	RO	×	×	1	\checkmark	X	
VO-ABE [17]	Decisional	Standard	1	1	×	X	×	N
	q-PBDHE							
CryptCloud+[5]	<i>l</i> -SDH	Standard	×	×	✓	X	×	
Flexible [12]	Generic Group	RO	1	×	1	\checkmark	×	,
JserCol [14]	Generic Group	RO	×	×	1	X	X	
Durs	CDH	RO	1	✓	\checkmark	\checkmark	1	

Round level *l* Secret key $K_{< l, k>}$ Blinded key BK_{<l,k>} $K_{<2,0>} = (BK_{<3,0>})^{K_{<3,1>}} = g^{K_{<3,0>}K_{<3,1>}} BK_{<2,0>} = g^{K_{<2,0>}}$ $K_{\langle 2,1\rangle} = (BK_{\langle 3,2\rangle})^{K_{\langle 3,3\rangle}} = g^{K_{\langle 3,2\rangle}K_{\langle 3,3\rangle}} BK_{\langle 2,1\rangle} = g^{K_{\langle 2,1\rangle}}$ $BK_{\langle 2,2\rangle} = g^{s_i}$ $K_{<2,2>} = s_i$ $K_{\langle 2,3\rangle} = (BK_{\langle 3,6\rangle})^{K_{\langle 3,7\rangle}} = g^{K_{\langle 3,6\rangle}K_{\langle 3,7\rangle}} BK_{\langle 2,3\rangle} = g^{K_{\langle 2,3\rangle}}$ $K_{<1,0>} = (BK_{<2,0>})^{K_{<2,1>}} = g^{K_{<2,0>}K_{<2,1>}} BK_{<1,0>} = g^{K_{<1,0>}}$ $K_{<1,1>} = (BK_{<2,2>})^{K_{<2,3>}} = g^{K_{<2,2}K_{<2,3>}} BK_{<1,1>} = g^{K_{<1,1>}}$ $K_{<0,0>} = (BK_{<1,0>})^{K_{<1,1>}} = g^{K_{<1,0>}K_{<1,1>}} \quad BK_{<0,0>} = g^{K_{<0,0>}}$

- Data owner will encrypt a file using symmetric encryption key K as CT_F
- Then K is encrypted using our key escrow-free CP-ABE scheme as CT_{Read}
- A file signature key K_{Write} is chosen and it is also encrypted using CP-ABE scheme as CT_{Write}
- Owner creates signature on <ID, CT_{Read}, CT_{Write}, PK_{Write} > with his signing key
- Owner also creates a signature on encrypted file CT_F
- Group denominator secret is encrypted with the current TGDH public key
- Owner then send all the information as the ciphertext CT_{Full} to the cloud and cloud stores the encrypted file as following format:

has proper access right.

•			
cheme	Ciphertext size	Secret key size	Public key size
ASS [8]	$(2a + 1) \mathbb{G}_1 +$	$(b + 1) \mathbb{G}_1 +$	$(u + 2) \mathbb{G}_1 $
	$ \mathbb{G}_T + \mathbb{C} $	$(\log m) \mathbb{K} $	$+ \mathbb{G}_T $
ur-I [13]	$(2a + 1) \mathbb{G}_1 +$	$(2b + 1) \mathbb{G}_1 $	$2 \mathbb{G}_1 + \mathbb{G}_T $
	$ \mathbb{G}_T + \mathbb{C} $	$+ (\log m) \mathbb{K} $	
ur-II [7]	$(2a + 1) \mathbb{G}_1 +$	$2(b+1) \mathbb{G}_1$	$3 \mathbb{G}_1 + \mathbb{G}_T $
	$ \mathbb{G}_T + \mathbb{C} $		
O-ABE [17]	$(2a + 1) \mathbb{G}_1 +$	$(b+3) \mathbb{G}_0 + p $	$(u + 2) \mathbb{G}_1 $
	$ \mathbb{G}_T + \mathbb{C} + l_2$		$+ \mathbb{G}_T $
RATTE [6]	$(a + 1) \mathbb{G}_1 +$	$2b \mathbb{G}_1 $ + (b +	$2 \mathbb{G}_1 $ + $ \mathbb{G}_2 $ +
	$a \mathbb{G}_2 + \mathbb{G}_T + \mathbb{C} $	$1) \mathbb{G}_2 +2 p $	$ \mathbb{G}_T $
ryptCloud+[5]	$(2a + 5) \mathbb{G}_1 +$	(<i>b</i> + 4 +	$(u+6) \mathbb{G}_1 +3 p $
	$ \mathbb{G}_T + \mathbb{C} $	$2\log m$) \mathbb{G}_1	
exible [12]	$(2a + 6) \mathbb{G}_1 +$	$(b+4) \mathbb{G}_1 +2 p $	$3 \mathbb{G}_1 + 2 \mathbb{G}_T + $
	$ \mathbb{G}_T + 2 p + \mathbb{C} $		p
serCol [14]	(4a + ra +	$4b \mathbb{G}_1 + \mathbb{G}_T $	$2(u + 3) \mathbb{G}_1 +$
	$1) \mathbb{G}_1 + \mathbb{G}_T +$		$2 \mathbb{G}_T + (2m - 1)$
	$ \mathbb{C} $		1) <i>p</i>
urs	$(2a + 1) \mathbb{G}_1 +$	$2b \mathbb{G}_1 +2 p $	$2 \mathbb{G}_1 + \mathbb{G}_T $
	$ \mathbb{G}_T + \mathbb{C} + l_2$		

Comparison of storage and communication efficiency with other schemes

Sahama	Enormation	Decryption		
Scheme	Енстурион	local	cloud	
DASS [8]	$(3a+1)C_1 + C_T$	(s + 1)P +	N/A	
		$s(C_1+C_T)$		
Hur-I [13]	$(3a+1)C_1$	(2s+1)P +	N/A	
	$+ C_T$	$C_1 + C_T \log a$		
Hur-II [7]	(3a + 2m +	(3s+1)P +	N/A	
	$(3)C_1 + C_T$	$C_T \log a$		
		$+ (m + 1)sC_1$		
VO-ABE [17]	$(3a+1)C_1 + C_T$	C_T	(2s+1)P	
			$+ aC_T$	
PIRATTE [6]	$(a+1)C_1 +$	$(s + \log a)C_T$	aC_2	
	$C_T + aC_2$	+ (3s + 1)P		
CryptCloud+[5]	$(a+5)C_1$	$2C_1 + sC_T +$	N/A	
	$+ C_T$	(2s + 5)P		
Flexible [12]	$2(a+3)C_1 +$	$4C_T$	(2s+4)P +	
	$2C_T$		$C_T \log a$	
UserCol [14]	(3a + ra +	$(2s-1)C_T +$	N/A	
	$(1)C_1 + C_T$	(3s + 1)P		
Ours	$2(a+1)C_1$	$2C_T$	(2s+1)P +	
	$+ C_T + P$		$C_1 + C_T \log a$	

Comparison with other schemes in terms of computation cost.

Schomo	Key update		Re-encryption		
Scheme	user	Cloud/GA	Owner	Cloud/GA	
DASS [8]	bC_1	0	$(3a+1)C_1$	0	
			$+ C_T$		
Hur-I [13]	bC_1	0	0	$(3a+1)C_1$	
				$+ C_T$	
Hur-II [7]	bmC_1	$2(m+1)C_1$	0	$(3a+1)C_1$	
				$+ C_T$	
PIRATTE [6]	0	amC_2	$(a+1)C_1 +$	0	
			$C_T + aC_2$		
CryptCloud+[5]	0	$3mC_1$	N/A	N/A	
Flexible[12]	$(b+1)C_1$	$2mC_1 + P$	0	$C_1 + P$	
UserCol [14]	0	$(2m-1)C_1$	0	$(3a+2)C_1 + C_T$	
Ours	$C_1 \log m$	$(2\log m + 3)C_1$	$C_1 + C_T + 2P$	0	

Cost of group dynamic change

CONCLUSIONS AND FUTURE WORK

1. We proposed a directly revocable ABE scheme called ReVO- ABE using our proposed data structure called e-TGDH tree.

2. ReVO-ABE does not put any cap on the number of user revocation or

3. A federated cloud architecture (using two clouds) and a novel key binding technique to prevent collusion attacks and achieve revocation under the assumption that at least one of the two clouds acts honestly

4. A multi-group secure data sharing scheme called DMG-SDS to demonstrate that our ABE scheme supports a muti-group setting.

5. We have only considered static access policy in this work; it will be interesting to see how it affects our system if dynamic access policy change is allowed.

M. A. Islam and S. K. Madria, "Attribute-Based Encryption Scheme for Secure Multi-Group Data Sharing in Cloud," in IEEE Transactions on Services Computing, vol. 15, no. 4, pp. 2158-2172, 1 July-Aug. 2022, doi: 10.1109/TSC.2020.3038836.