DISTDET: A Cost-Effective Distributed Cyber Threat Detection System

Advanced Persistent Threat (APT) Attack

APT attacks have plagued many well-protected businesses

- Advanced: sophisticated techniques exploiting multiple vulnerabilities
- Persistent: continuously monitoring and stealing data from target
- **Threat**: **strong** economical or political motives \bullet

Ubiquitous System Monitoring

- Build a **provenance graph** based on system events collected from system kernels, describing operations of system entities (e.g., process read/write files).
- **Contextual information** in the provenance graph is effective in revealing

advanced attack tactics.

Operation Types Entity↔**Entity** Process→File ead, write, create, chmod, rename Process↔Process fork, clone, execve, pipe Process→IP sendto, recvfrom, recvmsg, sendmsg

- **Fundamental limitations** in efficient attack investigation
- Intolerable computational overheads: constructing provenance graphs consumes significant computing resources.
- **Poor balance in precision and recall for detection**: it is difficult to achieve a balance of precision and recall in detection.

False Alarm Filtering

- **Observation**: "the alarms representing the same behaviors will be repetitively reported over a period of time"
 - **Alarm Deduplication**: Alarms with the same events in a time window are aggregated into one alarm
- **Observation**: "many false alarms are related to the benign behaviors triggered by semantically similar commands"
 - **ASG Semantic Aggregation:** ASGs with similar commands are aggregated into one ASG
- **Observation**: "the contexts for these alarms are generally known to represent benign behaviors"
 - **ASG Prioritization: Compute anomaly scores of aggregated ASGs based on** rareness (frequency) and filter those with low anomaly scores

Xusheng Xiao, Associate Professor, School of Computing and Augmented Intelligence, Arizona State University

gotohttp.lst

gotohttp.ini

DISTDET System

techniques for detecting and investigating advanced cyber attacks

DISTDET Overview

Host-based Anomaly Detection – HST and ASG

- on training events. Any event not observed in the built HST will generate an alarm.
- An Alarm Summary Graph (ASG) is a summary graph that includes the process p that initiates the suspicious behavior reported in an alarm, and the events initiated by p's ancestor processes and descendent processes.

devmgmt.msc

Global Model Derivation

Observation: "local models can easily lead to false alarms in detection"

- Cluster the host models based on the services provided by the hosts
- Extract the list of service-specific processes from each host model
- Compute the word embeddings of the extracted processes' names
- Use k-means algorithm to cluster the host models
- Merge the behaviors of the common processes in the same cluster

The first cost-effective detection system that synergistically combines distributed computing, anomaly detection, and false alarm filtering

- Lightweight Client-Side Detection
- **Unique Properties of False Alarms**
- known to represent benign behaviors
- Global View of Service Behaviors • A global model built in the server can observe the behaviors in all the phases and can complement the missing observations in the local models.

Hierarchical System Event Tree (HST) is a compact index that categorizes auditing events based on their properties using a multi-layer tree. It is built based

Alarm Summary Graphs (ASG)

Evaluation Summary

- 3.4 USD to 0.061 USD (56 \times reduction)
- Outperform the state-of-the-art approaches
- Achieve a F1 of 0.89 for the public arena dataset
- \bullet

Feng Dong, Liu Wang, Xu Nie, Fei Shao, Haoyu Wang, Ding Li, Xiapu Luo, and Xusheng Xiao. DISTDET: A Cost-Effective Distributed Cyber Threat Detection System. In Proceedings of the USENIX Security Symposium (USENIX Security 2023), Anaheim, CA, USA, May 2023.

• Shift part of the attack detection to the clients and transmit only summary graphs that represent potential attacks to the server.

• False alarms typically possess some unique properties: (1) the alarms representing the same behaviors will be repetitively reported over a period of time; (2) many false alarms are related to the benign behaviors triggered by semantically similar commands; (3) the contexts for these alarms are generally

Reduce the host cost (the expense of securing a single host) from

• Achieve a F1 of 0.98 for the industry arena and DARPA TC datasets

• DISTDET reduces the false alarms from 230 alarms/host/day to 0.71

alarms/host/day, saving 99.69% of the required inspection efforts.

DISTDET found 900+ real attacks during roughly 6 months and

achieved better performance than other existing EDRs.