
Abstract
• Deep neural networks (DNNs) are known to be vulnerable to adversarial 

attacks, posing a severe threat to security-critical applications such as 
autonomous driving, remote diagnosis, etc. 

• Existing solutions are limited in detecting/preventing such attacks and 
impacting the original tasks' performance.

• We present AIGuardian, a novel approach to defeating adversarial attacks 
that leverages intentionally embedded backdoors to fail the adversarial 
perturbations and maintain the performance of the original main task.

• AI-Guardian reduces the attack success rate from 97.3% to 3.2%, which 
outperforms the state-of-the-art works by 30.9%, with only a 0.9% decline in 
the clean data accuracy.

What is an Adversarial Attack?

The Approach
Intuitively

• Intend to embed a controlled backdoor into the to-be-protected model

• Attach the trigger to all inputs after deploying the protected model

Two Problems to Address
(P1) Ensure the embedded backdoor always ̀ suppresses’ the effect of adversarial attacks.

(P2) Ensure the protected model produces the correct outputs to clean inputs even when our backdoor is attached.

Solutions
(S1) We propose a backdoor enhancement scheme to improve the suppression of the backdoor over the adversarial attack.

(S2) We design a unique backdoor, named bijection backdoor, to maintain a one-to-one mapping between the source label 
and the target label of the backdoor.

Results

Conclusion
• AI-Guardian defeats adversarial attacks by embedding a controlled backdoor 

into the to-be-protected model.

• We proposed the backdoor enhancement and bijection backdoor to 
facilitate the design.

• AI-Guardian can reduce the attack success rate of Aes from 97.3% to 3.2%, 
with only a 0.9% decline in clean data accuracy. In addition, AI-Guardian 
incurs almost negligible overhead to the model runtime performance, with 
only a 0.36% increase in the model prediction time.

Discussion
• Existing backdoor detection works cannot recover our trigger.

• Existing model inversion attacks cannot reverse our trigger either. 

• Limitations of AI-Guardian

1. Backdoor triggers should be kept securely
2. Lack of theoretical guarantee
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What is a Model Backdoor?

When Backdoor Meets Adversarial

• Given a backdoor model, what happens if a backdoor trigger is attached to 
an input of an adversarial attack?

• We find that in most cases, the model produces results depending on the 
backdoor, i.e., backdoor `suppressing’ the effects of adversarial attacks.

Formula
• Definition of the bijection backdoor:

• The loss function to embed the bijection backdoor

• The adversarial attack subtly modifies 
the inputs, usually imperceptible to 
human beings, to make the victim 
model produce incorrect classification 
or prediction results.

• It naturally exists in almost all models.

We reduce the success rate of various adversarial attacks from 97.3% to 3.2% on average.

We also extended AI-Guardian to NLP and speech recognition domains.
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• Backdoor embeds a hidden behavior 
into the model, which keeps 
“hibernated” until a specific trigger is 
applied to the input, causing the model 
to produce the predefined classification 
or prediction results.

• It is intentionally embedded.
• Universal backdoor vs Specific Backdoor


