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Outline

• What is adversarial attack?
• Our research
• Conclusion



What is machine learning?
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Existing Research

• Image (lots of works)
– White box, black box
– Digital, physical

• Video (leverage findings on image)
– White box, limited black box and blind
– Digital, limited physical

• Audio (few works)
– Mostly white box
– Mostly digital
–

7



Existing Research

• Image (lots of works)
– White box, black box
– Digital, physical

• Video (leverage findings on image)
– White box, limited black box and blind
– Digital, limited physical
– Our work: both the black box and physical (ACM CCS 2019)

• Audio (few works)
– Mostly white box
– Mostly digital
– Our work: both black box and physical (USENIX Security 

2018, 2020)
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Speech Recognition
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Echo, unlock the front door

Echo, unlock the front door



Adversarial attacks against speech 
recognition?
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Hmm, quality of the soft 
music is not so good.

Echo, unlock the front door

Soft music with perturbation added



Step 1: White Box Attack

• Methodology:
– Impact many users in an automated fashion

• Revise song/music 
– Generate impossible or difficult to be noticed adversarial 

samples
• Revise enough
• Revise little

– Attack in the physical world (practical attack)
• Modeling random noise to accommodate background noise, 

electronic noise from speakers
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CommanderSong: A Systematic Approach for Practical Adversarial Voice Recognition , 
USENIX Security ‘18
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okay google call one one zero one one nine one 
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Typical Speech Recognition: Kaldi
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Our Approach
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A sequence 
of pdf id

Our Approach

x’(t) Gradient 
descent
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Dealing with Noise



Step 2: Black-Box Attack

• Attack what?
– Google Home, Amazon Echo
– Google Assistant, Microsoft Cortana, Apple Siri running 

on smartphone
• Challenges (even you know how to  attack physically)
– You know nothing about the model
– It fails to respond even if you directly talk to it!
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Devil’s Whisper: A General Approach for Physical Adversarial Attacks against Commercial 
Black-box Speech Recognition Devices, USENIX Security 20
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Step 2: Black-Box Attack

• Methodology:
– Target at wakeup word + those frequently-used commands

• Trained to be quite sensitive to the above phrases
– Train a local substitute model approximating the target on 

the above phrases
• Build special dataset with twisted speech
• Query the corresponding speech to text API service

– Enhance the substitute using a complete base model
• Limited capacity of local substitute model

– Finally 
• Ensemble a local substitute model and a complete model 
• Both are white box
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Step 2: Black-Box Attack
• Interpretability

– Decision boundary in high dimensional space
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Step 2: Black-Box Attack Demo
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Step 2: Black-Box 
Attack Demo
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Conclusion
• Attacks are feasible
– Image, audio, video
– Digital, physical
– White box, black box

• Defense
– Quite limited and specific

• Examine the distribution of training dataset
• Smoothen the gradient

– General approach to defend machine learning 
is demanded
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