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What is machine learning?




Adversarial Attack




Adversarial Attack

Data acquisition /

8
® 0.0
o o’® 0@ ” Practical usage

Original Inputs Modified Inputs Wrong ML Detection

SPEED
LIMIT

45

Confusion for self-
driving vehicles




Existing Research

* Image (lots of works)
— White box, black box
— Digital, physical

* Video (leverage findings on image)
— White box, limited black box and blind
— Digital, limited physical

* Audio (few works)
— Mostly white box
— Mostly digital



Existing Research

* Image (lots of works)

— White box, black box
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* Video (leverage findings on image)

— White box, limited black box and blind

— Digital, limited physical

— Our work: both the black box and physical (ACM CCS 2019)
* Audio (few works)

— Mostly white box

— Mostly digital

— Our work: both black box and physical (USENIX Security
2018, 2020)
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Speech Recognition

Echo, unlock the front door

Echo, unlock the front door
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Adversarial attacks against speech
recognition?
Echo, unlock the front door

Soft music with perturbation added
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Hmm, quality of the soft
music is not so good.
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Step 1: White Box Attack

* Methodology:

— Impact many users in an automated fashion
* Revise song/music
— Generate impossible or difficult to be noticed adversarial
samples
* Revise enough
* Revise little
— Attack in the physical world (practical attack)

* Modeling random noise to accommodate background noise,
electronic noise from speakers

CommanderSong: A Systematic Approach for Practical Adversarial Voice Recognition,
USENIX Security ‘18 12



Step 1: White Box Attack

* Methodology:

— Impact many users in an automated fashion
* Revise song/music
— Generate impossible or difficult to be noticed adversarial
samples
* Revise enough
* Revise little
— Attack in the physical world (practical attack)

* Modeling random noise to accommodate background noise,
electronic noise from speakers

okay google call one one zero one one nine one
two zero

13



Typical Speech Recognition: Kaldi
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Our Approach

A sequence of Phoneme
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Dealing with Noise
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Step 2: Black-Box Attack

 Attack what?

— Google Home, Amazon Echo

— Google Assistant, Microsoft Cortana, Apple Siri running
on smartphone

* Challenges (even you know how to attack physically)
— You know nothing about the model
— |t fails to respond even if you directly talk to it!

Devil’'s Whisper: A General Approach for Physical Adversarial Attacks against Commercial
Black-box Speech Recognition Devices, USENIX Security 20
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Step 2: Black-Box Attack

* Methodology:

— Target at wakeup word + those frequently-used commands
* Trained to be quite sensitive to the above phrases

— Train a local substitute model approximating the target on
the above phrases

* Build special dataset with twisted speech
* Query the corresponding speech to text APl service

— Enhance the substitute using a complete base model
 Limited capacity of local substitute model

— Finally
 Ensemble a local substitute model and a complete model
* Both are white box



Ensembled

Step 2: Black-Box Attack

Interpretability
— Decision boundary in high dimensional space

Target
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Step 2: Black-Box Attack

Interpretability
— Decision boundary in high dimensional space
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Step 2: Black-Box Attack Demo
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Step 2: Black-Box Attack Demo
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Top News

Kim showered Trump with flattery in letter
before Hanol summit
NBC News - 8 hours ago

Kavanaugh joins SCOTUS majority to
delay execution of Texas Inmate
CBS News - 3 hours ago

Japan's February household spending
seen rising for third straight month:
Reuters poll

Reuters * 27 minutes ago

VIEW MORE
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Conclusion

* Attacks are feasible
— Image, audio, video
— Digital, physical
— White box, black box
 Defense

— Quite limited and specific
* Examine the distribution of training dataset
 Smoothen the gradient

— General approach to defend machine learning
is demanded






