Secure Cloud Assisted Smart Cars

Maanak Gupta

Assistant Professor
Department of Computer Science
Tennessee Technological University

CAE Forum

November 13, 2019

mgupta@tntech.edu

www.maanakgupta.com

Cyber Security Landscape

Cyber Security Landscape

Smart Cars Ecosystem

Information and Entertainment

High Mobility, Location Centric Time Sensitive, Dynamic Pairing Multiple Fog/Cloud Infrastructures

No More Isolated.!

Software Reliance , Broad Attack Surface, Untrusted Entities

The Perfect World.!

I **TRUST** my users. Everything is Secure. !! Confidentiality
Integrity
Availability

Access Control Mechanisms

A user [U] is allowed to perform an operation [OP] on an object [OB] if security policy [P] is satisfied.

Access Control Mechanisms

PROTECTION

A user [U] is allowed to perform an operation [OP] on an object [OB] if security policy [P] is satisfied.

Attribute Based Access Control

- Three Dominant Models: DAC, MAC and RBAC.
- > ABAC: Decision based on the attributes of entities
- > Attributes are name value pair: age (Alice) -> 29
- Core entities in ABAC include:
 - UsersObjectsEnvironment or Context
- > Authorization Policies: determine rights just in time
 - retrieve attributes of relevant entities in request
- Enhance flexibility and fine grained access control
- NIST Guidelines to ABAC

Operations

Extended Access Control Oriented Architecture

E-ACO architecture

Vehicular IoT components in architecture

Attributes and Alerts

Speed Limit: 50 mph

Deer Threat: ON Ice on Road: NO

Speed Limit: 30 mph

Flood Warning: ON

Road Work: ON

Speed Limit: 20 mph

School Zone: ON

Amber Alert: ABC123

Vehicle moves and are assigned to different groups and inherits their attributes/alerts.

Using Location Groups

Administrative Questions:

- How the attributes or alerts of groups are updated?
- How are moving entities assigned to groups?
- How groups hierarchy is created?

Operational Questions:

- How attributes and groups are used to provide security?
- How user privacy preferences are considered?

Reported MQTT message

Ice on Road: NO

Road Work: ON

CV-ABAC_G Model

{ location, size, IP, direction, speed, VIN, cuisine-type}

{ read, write, control, notify, administrative actions }

Formal Specification

Basic Sets and Functions

- S, CO, O, G, OP are finite sets of sources, clustered objects, objects, groups and operations respectively [blue circles in Figure 4].
- A is a finite set of activities which can be performed in system.
- ATT is a finite set of attributes associated with S, CO, O, G and system-wide. Attribute Function
- For each attribute att in ATT, Range(att) is a finite set of atomic values.
- attType: ATT = {set, atomic}, defines attributes to be set or atomic valued.
 Attribute Type
- Each attribute att in ATT maps entities in S, CO, O, G to attribute values. Formally,

```
\underbrace{\text{att}: S \cup \text{CO} \cup \text{O} \cup \text{G} \cup \{\text{system-wide}\} \rightarrow}_{\text{2}} \begin{cases} \text{Range(att)} \cup \{\bot\} & \text{if attType(att) = atomic} \\ 2^{\text{Range(att)}} & \text{if attType(att) = set} \end{cases}
```

- POL is a finite set of authorization policies associated with individual S, CO, O, G.
- directG : CO → G, mapping each clustered object to a system group, equivalently CGA \subseteq CO × G.
- parentCO : O → CO, mapping each object to a clustered object, equivalently OCA \subseteq O × CO.
- GH \subseteq G \times G, a partial order relation \succeq_g on G. Equivalently, parentG : G \rightarrow 2^G, mapping group to a set of parent groups in hierarchy.

Group Hierarchy

Attribute Mapping

Formal Specification

Effective Attributes of Groups, Clustered Objects and Objects (Derived Functions)

- For each attribute att in ATT such that attType(att) = set:
 - $\bullet \quad \text{eff} G_{\text{att}}: G \rightarrow 2^{\text{Range(att)}}, \text{ defined as eff} G_{\text{att}}(g_i) = \text{att}(g_i) \cup (\bigcup_{g \ \in \ \{g_j \mid g_i \ \succeq_g \ g_j\}} \text{eff} G_{\text{att}}(g)).$
 - effCO_{att} : CO \rightarrow 2^{Range(att)}, defined as effCO_{att}(co) = att(co) \cup effG_{att}(directG(co)).
 - effO_{att} : O \rightarrow 2^{Range(att)}, defined as effO_{att}(o) = att(o) \cup effCO_{att}(parentCO(o)).
- For each attribute att in ATT such that attType(att) = atomic:
 - effGatt: $G \to Range(att) \cup \{\bot\}$, defined as effGatt(g_i) = $\begin{cases} att(g_i) & \text{if } \forall g' \in parentG(g_i). \ effGatt(g') = \bot \\ effGatt(g') & \text{if } \exists \ parentG(g_i). \ effGatt(parentG(g_i)) \neq \bot \ then \ select \\ parent \ g' \ with \ effGatt(g') \neq \bot \ updated \ most \ recently. \end{cases}$ effCOatt: $CO \to Range(att) \cup \{\bot\}$, defined as $CO \to Range(att) \cup \{\bot\}$, d $\operatorname{att}(g_i)$ if $\forall g' \in \operatorname{parent}G(g_i)$. $\operatorname{eff}G_{\operatorname{att}}(g') = \bot$

Attributes more Dynamic

Attributes Inheritance

Policy Language

Authorization Functions (Policies)

- Authorization Function: For each op \in OP, Authop(s : S, ob : CO \cup O \cup G) is a propositional logic formula returning true or false, which is defined using the following policy language:
 - $\alpha := \alpha \land \alpha \mid \alpha \lor \alpha \mid (\alpha) \mid \neg \alpha \mid \exists x \in \text{set}.\alpha \mid \forall x \in \text{set}.\alpha \mid \text{set} \triangle \text{ set} \mid \text{atomic} \in \text{set} \mid \text{atomic} \notin \text{set}$
 - △ ::= ⊂ | ⊆ | ⊈ | ∩ |∪
 - set ::= eff_{att}(i) | att(i) for att \in ATT, i \in S \cup CO \cup O \cup G \cup {system-wide}, attType(att) = set for att \in ATT, i \in S \cup CO \cup O \cup G \cup {system-wide}, attType(att) = atomic
 - Administrators in the police department can send alert to location-groups in city limits.

```
Auth<sub>alert</sub>(u:U, g:G) :: dept (u) Police \Lambda parent-city(g) = Austin \Lambda
Austin \in jursidiction (u).
```

❖ Only mechanic in the technician department from Toyota-X dealership must be able to read sensor in Camry LE. Further, this operation must be done between time 9 am to 6 pm.

```
Auth<sub>read</sub>(u:U, co:CO) :: role (u) Technician \Lambda employer(u) = Toyota-X \Lambda make (co) = Toyota \Lambda model(co) = Camry LE \Lambda operation_time(u) \in {9am,10,11...6pm}
```

Activity Authorization Decision

Authorization Decision

A source s ∈ S is allowed to perform an activity a ∈ A, stated as Authorization(a : A, s : S), if the required policies needed to allow the activity are included and evaluated to make final decision. These multi-layer policies must be evaluated for individual operations (op; ∈ OP) to be performed by source s ∈ S on relevant objects (x; ∈ CO ∪ O ∪ G).

Formally, Authorization(a : A, s : S) \Rightarrow Auth_{op1}(s : S, x₁), Auth_{op2}(s : S, x₂), , Auth_{opn}(s : S, x₃)

Evaluate all relevant policies to make a decision

A restaurant in group A must be allowed to send notifications to all vehicles in location group A and group B.

I only want notifications from Cheesecake factory.

Implementation in Amazon Web Services (AWS)

Vehicles and Groups

4 Location Groups (static demarcation)

Vehicles movement (coordinates generated using Google API)

Snapshot (table keeps ch

AWS Architecture

AWS Cloud Components

Performance Metrics

Performance Metrics

Let's Talk ..!!

Questions, Comments or Concerns

mgupta@tntech.edu

www.maanakgupta.com

