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 Traditional Grids:

 Unidirectional Power Flow

 Centralized SCADA control

 Grid-Side Attacks:

 SCADA  (2015 Ukraine Power Grid 

Attack)

 Expertise and resources required to 

break industry-grade defense.
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Demand-Side Cyberattack

Transmission Facility

Generation Facility

SCADA

 Evolution of Smart Grids:

 Decentralized Controllers 

 Bidirectional Power Flow

 Customers to Prosumers

 Demand-Side Attacks:

 Billions of IoT devices ( ~31 billions 

today, 75 billions by 2025)*

 Customers poor cyber hygiene

 2016 Mirai botnet via IoT devices

* https://securitytoday.com/Articles/2020/01/13/The-IoT-Rundown-for-2020.aspx?Page=2

Prosumers
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Demand-Side Attack Vectors

EV Charging Demand Response (DR)

Artificial Intelligence (AI)

Public Data
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Why Attackers target EV Charging? 

1. Rapidly expanding numbers of EVs and EV charging stations (EVCSs)

Fig: Global electric car sales market share, 2013-19 * Fig: Tesla chargers

**Tesla Superchargers*Global EV Outlook 2019, IEA 

https://www.tesla.com/supercharger
https://webstore.iea.org/download/direct/2807?fileName=Global_EV_Outlook_2019.pdf
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Why Attackers target EV Charging? 

2. Growing capacity of EV and EVCSs

<3 kW AC <20 kW AC >350 kW DC

100s of miles in a single charge of <30 minutes 

>100 kWh 

3. Increasing internet-enabled charging
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Cyber-Physical Outlook of EV Charging

 No or immature charging 
standards

 Third-party facilitating EV 
charging 

 Public charging data  

1. S. Acharya, Y. Dvorkin, and R. Karri, “Public plug-in 
electric vehicles + grid data: Is a new cyberattack 
vector viable ?” IEEE Transactions on Smart Grid, 2020. 

2. S. Acharya, Y. Dvorkin, H. Pandˇzi ́c , and R. Karri, 
“Cybersecurity of Smart Electric Vehicle Charging” IEEE 
Access, 2020
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Attack Development Using EV + Public Data
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S. Acharya, Y. Dvorkin, and R. Karri, “Public plug-in electric vehicles + grid data: Is a new cyberattack vector viable?” IEEE 
Transactions on Smart Grid, 2020. 
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EV Charging Public Data: Manhattan Case
EVCS companies in Manhattan

We got EV data! 

Nice! Are 
grid data 

public too?
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Public Power Grid Data: Manhattan Case

Where Do We get Grid Data?
Google Maps
Con Edison
New York Independent System Operator
US Energy Information Administration
Reports, public releases, news reporting, etc.
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Reconstruction of Grid Layout 

Fig: 7 node high-voltage power grid: 4 gen and 4 load nodes.Fig: Power grid topology in Manhattan
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Power Grid Model 

• DC power flow equations: • Generator’s swing equations:

• Turbine-governor controller:

• Nodal Demand breakdown:
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Power Grid Model 

• Grid dynamic equations: • LTI State Space equations:

• Inputs and states:

• Dimensions:

Single–node attack
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Data-driven Cyberattack Model

Unattacked 
Grid Model

• Data-driven model 
• Power grid instability analyzed using eigenvalues of the system
• Optimization of 𝐾𝑎 ? 
• 𝐾𝑎𝑥 = Δ𝑃𝐿 ;     0≤ 𝐾𝑎𝑥 ≤ Δ𝑃𝑚𝑎𝑥

Well-known 

parameters

Fig: Data driven state-feedback  based attack model I will drag 
eigenvalues to 

unstable region 



Case Study: EV Destabilizing the Grid

• Destabilize grid via eigenvalue relocation

• 4 Gen nodes, 4 load nodes

• 4 𝛿, 4 𝜔,  4𝜃, 12 eigenvalues

• Not fully controllable

• Attacker’s target ; 𝑒𝑎 = 𝑎 + 𝑗𝑏 = 0.5 ± 𝑗5

• 355 MW could succeed the attack

Note:

Relocation of the eigenvalues under attack on node B4, where 𝑒𝑜 denotes
original (pre-attack) eigenvalues and 𝑒𝑎 denotes eigenvalue locations
targeted by the attacker. The post-attack eigenvalues are denoted as 𝑒𝑝.
Green lines represent ξ and ωn and the gray shaded area represents 𝑆𝑎.
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1K x (with 350 kW chargers)



Case Study: EV Destabilizing the Grid

• The North American Electric Reliability (NERC) 
defines a region of vulnerability:

• 𝑆𝑎 discretized: 𝜉 = 0.3%, 𝜔𝑛 = 0.1 𝑟𝑎𝑑/𝑠

Maximum relocation error 𝜀 = ǁ𝑒𝑝 − ǁ𝑒𝑎
2

for different

መ𝜉, ෝ𝜔𝑛 ∈ መ𝑆𝑎chosen by the attacker, where. ǁ𝑒𝑝 are the two

nearest eigenvalues to Ƹ𝑒𝑎.

Δ𝑃𝐿 (MW) associated with 𝜀 ≤ 0.1
720x (with 350 kW chargers)
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Demand Response Model
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S. Acharya, Y. Dvorkin, and R. Karri, “Causative Cyberattacks on Online 
Learning-based Automated Demand Response Systems”, IEEE Transactions on 
Smart Grid, 2021

 DR without aggregators (1 – 6)

 DR with aggregators ( a –f)

 Data from Smart Meters and ISO market

 AI in DRAS

 Vulnerable home IoT  Smart Meters

 No system wide communication standard

 Smartphones in middle of DR 



Demand Response Attack Model 
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Case Study:  NYU Microgrid
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Fig: Schematic of NYU microgrid.



Case Study:  Demotivating Grid from DR
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Fig:  Attack valued DR customers 

Fig: Stealthy increase of DR incentive by manipulating  as 
less as 30 % DR customers. 

1 1.2 1.4 1.6 1.8 2

 ($/kW)

0

10

20

30

40

50

60

x
 (

k
W

)

Normalized Aggregated Customer

Most Valuable Customer

Least Valuable Customer



Case Study: Technical challenges in Grid
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Fig: Changes in NYU microgrid demand  
caused by the attacks.  Fig: Microgrid frequency in response to the attacks.
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Cyber Insurance as a defense?

• Defense is not a 100% guarantee. 

• Many can’t even afford the shield or are unaware.

• Cyber insurance: Can’t  avoid attack but saves from business loss.
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Cyber Insurance Market

Fig: Cyber Insurance Market Trend.

Fig: Cyber Insurance Market Size.
• Energy sector share in insurance market?
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Power Grid as an Insurer
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Conclusion

 Demand-Side Cyberattacks base on customer cyber hygiene.

 Grids leaving high-wattage devices unmonitored.

 Public data incurring security and privacy issue.

 Cyber consensus among power grid and demand-side service providers to

develop business standards and cyber responsibilities.

 Cyber insurance could be a solution to foster small green business.
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Thank you !


