
Demystifying and exploiting IoT Timeout 
Behaviors in Smart Home

Chenglong Fu

Assistant Professor

Department of Software and Information Systems

UNC Charlotte

chenglong.fu@uncc.edu

Booming of the Internet of Things Market

• More than 10 billion active IoT devices

• $400 billion IoT market size

• 43% smart home device household penetration rate

itations are threefold. First, the logic of some smart apps is
too complex to be mined accurately, causing false negatives
and positives. For example, the event pattern introduced by
the smart app logic “Turn o! a smart plug 30 minutes after
two motion sensors in the living room are both motionless" is
di!cult to be mined considering the ‘AND’ logic between
two motion sensors and the 30 minutes action delay. As a re-
sult, an anomaly “the smart plug fails to turn o! ” may not be
detected. Second, the learning results are typically di!cult
to interpret; thus, they can hardly be explained and often
confuse users. Third, the learning results cannot be updated
quickly when smart apps or con"guration changes. A long
re-training process is then needed to adapt to the changes
and many false alarms arise before the re-training is done.
Intuitively, incorporating semantic information, such as

automation logic, device types, relations and installation lo-
cations, can help improve the accuracy of anomaly detection.
However, there are a number of challenges to overcome in
order to realize this idea: 1) Standard data mining methods
take event logs as inputs; however, it is unknown how to
represent the diverse semantic information in the form of
event logs. 2) System behavior patterns derived from smart
apps and those mined from events logs may con#ict. It is
challenging to identify and resolve these con#icts. 3) When
smart apps change, there are no e$ective methods to update
the system pro"ling accordingly.
To "ll the gap, we present Home Automation Watcher

(HAWatcher), a novel anomaly detection system for appi"ed
home automation systems. We propose a semantics-assisted
mining method that exploits diverse semantic information
to construct hypothetical correlations (where a correlation de-
scribes how a device state or event correlates with another),
and use event logs as evidence to verify them. Second, as
the correlations are explainable according to the semantics,
they can be easily re"ned to resolve con#icts with smart
apps. Third, still thanks to explainability, they can be up-
dated conveniently according to smart app changes. The
correlations are then used by our shadow execution module
to simulate normal behaviors in the virtual world. The simu-
lated states are compared to those in the real world through
both contextual checking and consequential checking, and
inconsistencies during comparison are reported as anomalies.
We make the following contributions.

• We propose a novel anomaly detection solution for appi-
"ed smart homes. It meets the emerging need of detect-
ing anomalies caused by IoT malfunctions or attacks.

• We propose a semantics-assisted mining method, which
infuses various semantic information (smart apps, con-
"guration, device types, installation locations) into the
mining process. An NLP-based approach is developed
to describe device relations for generating hypothetical
correlations. The mined correlations are explainable,

Figure 2: The SmartThings architecture.
and can be re"ned easily to resolve con#icts with smart
apps and updated conveniently when apps change.

• We propose the notion of shadow execution for smart
homes, which simulates the normal behaviors of a home
according to the learned correlations and detects anoma-
lies at a "ne granularity, i.e., IoT events.

• We implement a prototype HAWatcher and evaluate it
on four real-world testbeds. HAWatcher reaches a high
precision of 97.83% and a recall of 94.12%, signi"cantly
outperforming prior approaches.

The rest of the paper is organized as follows. In Section 2,
we describe background about appi"ed smart homes. In Sec-
tion 3, we survey IoT device anomalies and present the threat
model. In Section 4, we describe three correlation channels
and the representation of correlations. We present the design
details in Section 5. The evaluation is presented in Section 6.
We discuss related work in Section 7, and limitations and
future work in Section 8. The paper is concluded in Section 9.

2 Background: Appi!ed Smart Homes

IoT devices in smart homes have become increasingly inte-
grated via IoT platforms for rich automation. IoT integration
platforms, such as SmartThings, Amazon Alexa, and Open-
HAB, support trigger-action automation programs. On these
platforms, despite the huge number of IoT devices, they are
abstracted into a small number of abstract devices. For ex-
ample, a smart light, regardless of its brand, shape, size, and
wireless technology, is abstracted into the same abstract de-
vice, light. Each abstract device has its associated events and
commands. Device vendors can have their products support
integration by realizing the events and commands.
We choose SmartThings [21] as an example IoT integra-

tion platform to present our design, as SmartThings is one of
the leading platforms and supports sophisticated automation
logic. Other integration platforms, such as Amazon Alexa,
have similar structures. As illustrated in Figure 2, a typical
SmartThings deployment has a cloud-centric architecture of
four layers. On the top is the SmartThings cloud,where smart
apps run and interact with abstracted capabilities. The cloud

Background: IoT Architecture

Network

IoT Servers

(running IoT Apps)

itations are threefold. First, the logic of some smart apps is
too complex to be mined accurately, causing false negatives
and positives. For example, the event pattern introduced by
the smart app logic “Turn o! a smart plug 30 minutes after
two motion sensors in the living room are both motionless" is
di!cult to be mined considering the ‘AND’ logic between
two motion sensors and the 30 minutes action delay. As a re-
sult, an anomaly “the smart plug fails to turn o! ” may not be
detected. Second, the learning results are typically di!cult
to interpret; thus, they can hardly be explained and often
confuse users. Third, the learning results cannot be updated
quickly when smart apps or con"guration changes. A long
re-training process is then needed to adapt to the changes
and many false alarms arise before the re-training is done.
Intuitively, incorporating semantic information, such as

automation logic, device types, relations and installation lo-
cations, can help improve the accuracy of anomaly detection.
However, there are a number of challenges to overcome in
order to realize this idea: 1) Standard data mining methods
take event logs as inputs; however, it is unknown how to
represent the diverse semantic information in the form of
event logs. 2) System behavior patterns derived from smart
apps and those mined from events logs may con#ict. It is
challenging to identify and resolve these con#icts. 3) When
smart apps change, there are no e$ective methods to update
the system pro"ling accordingly.
To "ll the gap, we present Home Automation Watcher

(HAWatcher), a novel anomaly detection system for appi"ed
home automation systems. We propose a semantics-assisted
mining method that exploits diverse semantic information
to construct hypothetical correlations (where a correlation de-
scribes how a device state or event correlates with another),
and use event logs as evidence to verify them. Second, as
the correlations are explainable according to the semantics,
they can be easily re"ned to resolve con#icts with smart
apps. Third, still thanks to explainability, they can be up-
dated conveniently according to smart app changes. The
correlations are then used by our shadow execution module
to simulate normal behaviors in the virtual world. The simu-
lated states are compared to those in the real world through
both contextual checking and consequential checking, and
inconsistencies during comparison are reported as anomalies.
We make the following contributions.

• We propose a novel anomaly detection solution for appi-
"ed smart homes. It meets the emerging need of detect-
ing anomalies caused by IoT malfunctions or attacks.

• We propose a semantics-assisted mining method, which
infuses various semantic information (smart apps, con-
"guration, device types, installation locations) into the
mining process. An NLP-based approach is developed
to describe device relations for generating hypothetical
correlations. The mined correlations are explainable,

Figure 2: The SmartThings architecture.
and can be re"ned easily to resolve con#icts with smart
apps and updated conveniently when apps change.

• We propose the notion of shadow execution for smart
homes, which simulates the normal behaviors of a home
according to the learned correlations and detects anoma-
lies at a "ne granularity, i.e., IoT events.

• We implement a prototype HAWatcher and evaluate it
on four real-world testbeds. HAWatcher reaches a high
precision of 97.83% and a recall of 94.12%, signi"cantly
outperforming prior approaches.

The rest of the paper is organized as follows. In Section 2,
we describe background about appi"ed smart homes. In Sec-
tion 3, we survey IoT device anomalies and present the threat
model. In Section 4, we describe three correlation channels
and the representation of correlations. We present the design
details in Section 5. The evaluation is presented in Section 6.
We discuss related work in Section 7, and limitations and
future work in Section 8. The paper is concluded in Section 9.

2 Background: Appi!ed Smart Homes

IoT devices in smart homes have become increasingly inte-
grated via IoT platforms for rich automation. IoT integration
platforms, such as SmartThings, Amazon Alexa, and Open-
HAB, support trigger-action automation programs. On these
platforms, despite the huge number of IoT devices, they are
abstracted into a small number of abstract devices. For ex-
ample, a smart light, regardless of its brand, shape, size, and
wireless technology, is abstracted into the same abstract de-
vice, light. Each abstract device has its associated events and
commands. Device vendors can have their products support
integration by realizing the events and commands.
We choose SmartThings [21] as an example IoT integra-

tion platform to present our design, as SmartThings is one of
the leading platforms and supports sophisticated automation
logic. Other integration platforms, such as Amazon Alexa,
have similar structures. As illustrated in Figure 2, a typical
SmartThings deployment has a cloud-centric architecture of
four layers. On the top is the SmartThings cloud,where smart
apps run and interact with abstracted capabilities. The cloud

Background: IoT Architecture

• IoT Event
◦ E.g., lock status
◦ Flow from device to server

• IoT Command
◦ E.g., unlock door
◦ Flow from server to device

Network

IoT Servers

(running IoT Apps)

itations are threefold. First, the logic of some smart apps is
too complex to be mined accurately, causing false negatives
and positives. For example, the event pattern introduced by
the smart app logic “Turn o! a smart plug 30 minutes after
two motion sensors in the living room are both motionless" is
di!cult to be mined considering the ‘AND’ logic between
two motion sensors and the 30 minutes action delay. As a re-
sult, an anomaly “the smart plug fails to turn o! ” may not be
detected. Second, the learning results are typically di!cult
to interpret; thus, they can hardly be explained and often
confuse users. Third, the learning results cannot be updated
quickly when smart apps or con"guration changes. A long
re-training process is then needed to adapt to the changes
and many false alarms arise before the re-training is done.
Intuitively, incorporating semantic information, such as

automation logic, device types, relations and installation lo-
cations, can help improve the accuracy of anomaly detection.
However, there are a number of challenges to overcome in
order to realize this idea: 1) Standard data mining methods
take event logs as inputs; however, it is unknown how to
represent the diverse semantic information in the form of
event logs. 2) System behavior patterns derived from smart
apps and those mined from events logs may con#ict. It is
challenging to identify and resolve these con#icts. 3) When
smart apps change, there are no e$ective methods to update
the system pro"ling accordingly.
To "ll the gap, we present Home Automation Watcher

(HAWatcher), a novel anomaly detection system for appi"ed
home automation systems. We propose a semantics-assisted
mining method that exploits diverse semantic information
to construct hypothetical correlations (where a correlation de-
scribes how a device state or event correlates with another),
and use event logs as evidence to verify them. Second, as
the correlations are explainable according to the semantics,
they can be easily re"ned to resolve con#icts with smart
apps. Third, still thanks to explainability, they can be up-
dated conveniently according to smart app changes. The
correlations are then used by our shadow execution module
to simulate normal behaviors in the virtual world. The simu-
lated states are compared to those in the real world through
both contextual checking and consequential checking, and
inconsistencies during comparison are reported as anomalies.
We make the following contributions.

• We propose a novel anomaly detection solution for appi-
"ed smart homes. It meets the emerging need of detect-
ing anomalies caused by IoT malfunctions or attacks.

• We propose a semantics-assisted mining method, which
infuses various semantic information (smart apps, con-
"guration, device types, installation locations) into the
mining process. An NLP-based approach is developed
to describe device relations for generating hypothetical
correlations. The mined correlations are explainable,

Figure 2: The SmartThings architecture.
and can be re"ned easily to resolve con#icts with smart
apps and updated conveniently when apps change.

• We propose the notion of shadow execution for smart
homes, which simulates the normal behaviors of a home
according to the learned correlations and detects anoma-
lies at a "ne granularity, i.e., IoT events.

• We implement a prototype HAWatcher and evaluate it
on four real-world testbeds. HAWatcher reaches a high
precision of 97.83% and a recall of 94.12%, signi"cantly
outperforming prior approaches.

The rest of the paper is organized as follows. In Section 2,
we describe background about appi"ed smart homes. In Sec-
tion 3, we survey IoT device anomalies and present the threat
model. In Section 4, we describe three correlation channels
and the representation of correlations. We present the design
details in Section 5. The evaluation is presented in Section 6.
We discuss related work in Section 7, and limitations and
future work in Section 8. The paper is concluded in Section 9.

2 Background: Appi!ed Smart Homes

IoT devices in smart homes have become increasingly inte-
grated via IoT platforms for rich automation. IoT integration
platforms, such as SmartThings, Amazon Alexa, and Open-
HAB, support trigger-action automation programs. On these
platforms, despite the huge number of IoT devices, they are
abstracted into a small number of abstract devices. For ex-
ample, a smart light, regardless of its brand, shape, size, and
wireless technology, is abstracted into the same abstract de-
vice, light. Each abstract device has its associated events and
commands. Device vendors can have their products support
integration by realizing the events and commands.
We choose SmartThings [21] as an example IoT integra-

tion platform to present our design, as SmartThings is one of
the leading platforms and supports sophisticated automation
logic. Other integration platforms, such as Amazon Alexa,
have similar structures. As illustrated in Figure 2, a typical
SmartThings deployment has a cloud-centric architecture of
four layers. On the top is the SmartThings cloud,where smart
apps run and interact with abstracted capabilities. The cloud

Background: IoT Architecture

• IoT Event
◦ E.g., lock status
◦ Flow from device to server

• IoT Command
◦ E.g., unlock door
◦ Flow from server to device

• IoT App (aka, smart app/routine/rule)
◦ Trigger: when motion-on (event) is

received
◦ Condition: if presence sensor is present
◦ Action: turn off indoor-camera

(command)

Network

IoT Servers

(running IoT Apps)

 
74% of IoT devices use TCP/IP

Zigbee and ZWave devices are connected
to IoT hubs, which also use TCP/IP

 
74% of IoT devices use TCP/IP

Zigbee and ZWave devices are connected
to IoT hubs, which also use TCP/IP

 
Message Integrity Protection

Tampering attempts: alert, session termination

TLS Message Integrity Protection

TLS Message Integrity Protection

Mi Jam

TLS Message Integrity Protection

Mi Jam

Mi+1

TLS Message Integrity Protection

Mi Jam

Mi+1

MAC(i+1,Mi+1) MAC(i,Mi+1)

Integrity
Violation

TCP TCP

Attacker

SSL/TLS

Outbound Queue

Inbound QueueIoT Device

MQTT/HTTP/... ...Application Layer
Transport Layer

Security

Transport Layer

IoT Server

Application Layer
Transport Layer

Security

Transport Layer

Fig. 2: Delaying IoT messages via a TCP hijacker.

ACKs. Hence, we focus on the timeout behavior at the
application layer. We �rst classify IoT messages into two
major types: (i) normal IoT event/command messages, and
(ii) keep-alive (also known as heartbeat) messages that are
used to check the connection quality and IoT device or
server’s liveness. We can describe an IoT device’s timeout
behaviors using three parameters:

• Timeout threshold of keep-alive messages. �is
parameter is only applicable to devices that use long-
live session because the purpose of keep-alive messages
is to detect and terminate non-responsive sessions.

• Pattern of keep-alive messages. �is parameter de-
scribes what condition will keep-alive messages be ex-
changed. Keep-alive messages are exchanged either in
a �xed period or non-periodically when the session
stays idle longer than a interval. �e keep-alive message
pa�ern comprises the period and strategy (�xed or on-
idle) of keep-alive messages.

• Timeout threshold of normal IoT messages. �is
parameter is only applicable to a portion of devices, as
some devices do not implement timeout for event and
command messages. For example, MQTT protocol does
not require timeout for normal messages.

With the three parameters, an a�acker can accurately
predict the happening of the incoming timeout of an IoT
device, and he can �ne-tune the delay imposed on the IoT
messages without causing timeouts.

C. A�ack Primitives
With the analysis of IoT network protocols, we obtain

two major insights: (1) We �nd that the timeout detection
provided by insecure layers (such as TCP) can be fooled.
(2) By observing the target device’s history tra�c, a�ackers
can derive the parameters to model the session timeout
behaviors. Based on the parameters, a�ackers can accurately
predict when timeout is to occur and achieve maximum delay
without causing device timeout. Following these insights,
we build two a�ack primitives, ��D���� and ��D����, for
delaying event and command messages, respectively.
TCP timeouts can be avoided with forged TCP ACKs. As

shown in Figure 2, for each device-to-server TCP connection,
via a TCP hijacker, a�ackers can split the connection between
the IoT device and the corresponding cloud server into two
separate TCP connections, with the TCP hijacker in the
middle. For each side’s connection, the a�acker can hold the
received packets, to incur a delay, before forwarding them to
the destination but acknowledge the receiving immediately.
If the delay is long and triggers the TCP’s keep-alive timeout,

the probing segments can be acknowledged using a forged
ACK to avoid connection termination. At the end of the delay,
all held packets are released so that the TLS MAC veri�cation
is not violated. �is way, transport layer protocols no longer
have any restrictions on the delay time.
Because of the encryption provided by TLS, we cannot

bypass the timeout checking of application layer protocols by
forging devices’ or server’s responses. Instead, we hold target
event messages until the moment right before an application
layer protocol timeout occurs. During the period of the delay,
any following messages are also delayed accordingly to avoid
breaking the sequence number checking of TLS.
We present the concrete steps to pro�le the parameters of a

device’s timeout behavior. A�ackers can perform these steps
on his own devices to collect parameters, and then apply
them to delay other devices of the same model.
1) By monitoring the device’s tra�c on idle state, devices

can be distinguished using on-demand sessions by their
intermi�ent TCP/TLS sessions. For devices that are
using long-live sessions, the packet length and period
of keep-alive messages can be observed.

2) By triggering normal messages of keep-alive devices, a
keep-alive pa�ern can be detected and con�rmed. If the
next keep-alive message is postponed accordingly, the
device has non-periodically keep-alive messages that
are exchanged when the session is idle. Otherwise, the
keep-alive messages are exchanged in a �xed period.

3) Timeout threshold of keep-alive messages can be mea-
sured by delaying a keep-alive message in idle state
until the timeout happens. �e interval between the
beginning of the delay and the occurring of timeout is
recorded as timeout period of keep-alive messages.

4) �e timeout threshold of normal (i.e., event and com-
mand) messages is measured using the same method
as that for keep-alive messages. �e message is in-
tentionally triggered right a�er a successful exchange
of a keep-alive message and delay it until timeout
happens. If the timeout occurs earlier than the antic-
ipated timeout of the next keep-alive message (which
is also delayed accordingly), this interval is recorded as
the timeout of the corresponding message. Otherwise,
it means the device does not implement a timeout
for normal message and the session timeout is solely
triggered by keep-alive messages.

Finally, the collected parameters can be veri�ed by ran-
domly delaying a message and predicting/observing the time-
out behaviors. �e parameters are considered to be correct
if the predicted timeout matches the real-world timeout.

In summary, the procedure for building the a�ack primi-
tives has the following steps. (1) Before launching the a�acks
at the victim environment, an a�acker selects popular IoT
devices as a�ack targets and pro�le their timeout behaviors.
Note that the pro�ling is one-time e�ort and the collected
knowledge can be shared among a�ackers. (2) �e a�acker
sni�s the network tra�c in the victim’s network and uses the
collected knowledge in the previous step to recognize victim

5

• TCP
• “picky” about delay

TCP TCP

Attacker

SSL/TLS

Outbound Queue

Inbound QueueIoT Device

MQTT/HTTP/... ...Application Layer
Transport Layer

Security

Transport Layer

IoT Server

Application Layer
Transport Layer

Security

Transport Layer

Fig. 2: Delaying IoT messages via a TCP hijacker.

ACKs. Hence, we focus on the timeout behavior at the
application layer. We �rst classify IoT messages into two
major types: (i) normal IoT event/command messages, and
(ii) keep-alive (also known as heartbeat) messages that are
used to check the connection quality and IoT device or
server’s liveness. We can describe an IoT device’s timeout
behaviors using three parameters:

• Timeout threshold of keep-alive messages. �is
parameter is only applicable to devices that use long-
live session because the purpose of keep-alive messages
is to detect and terminate non-responsive sessions.

• Pattern of keep-alive messages. �is parameter de-
scribes what condition will keep-alive messages be ex-
changed. Keep-alive messages are exchanged either in
a �xed period or non-periodically when the session
stays idle longer than a interval. �e keep-alive message
pa�ern comprises the period and strategy (�xed or on-
idle) of keep-alive messages.

• Timeout threshold of normal IoT messages. �is
parameter is only applicable to a portion of devices, as
some devices do not implement timeout for event and
command messages. For example, MQTT protocol does
not require timeout for normal messages.

With the three parameters, an a�acker can accurately
predict the happening of the incoming timeout of an IoT
device, and he can �ne-tune the delay imposed on the IoT
messages without causing timeouts.

C. A�ack Primitives
With the analysis of IoT network protocols, we obtain

two major insights: (1) We �nd that the timeout detection
provided by insecure layers (such as TCP) can be fooled.
(2) By observing the target device’s history tra�c, a�ackers
can derive the parameters to model the session timeout
behaviors. Based on the parameters, a�ackers can accurately
predict when timeout is to occur and achieve maximum delay
without causing device timeout. Following these insights,
we build two a�ack primitives, ��D���� and ��D����, for
delaying event and command messages, respectively.
TCP timeouts can be avoided with forged TCP ACKs. As

shown in Figure 2, for each device-to-server TCP connection,
via a TCP hijacker, a�ackers can split the connection between
the IoT device and the corresponding cloud server into two
separate TCP connections, with the TCP hijacker in the
middle. For each side’s connection, the a�acker can hold the
received packets, to incur a delay, before forwarding them to
the destination but acknowledge the receiving immediately.
If the delay is long and triggers the TCP’s keep-alive timeout,

the probing segments can be acknowledged using a forged
ACK to avoid connection termination. At the end of the delay,
all held packets are released so that the TLS MAC veri�cation
is not violated. �is way, transport layer protocols no longer
have any restrictions on the delay time.
Because of the encryption provided by TLS, we cannot

bypass the timeout checking of application layer protocols by
forging devices’ or server’s responses. Instead, we hold target
event messages until the moment right before an application
layer protocol timeout occurs. During the period of the delay,
any following messages are also delayed accordingly to avoid
breaking the sequence number checking of TLS.
We present the concrete steps to pro�le the parameters of a

device’s timeout behavior. A�ackers can perform these steps
on his own devices to collect parameters, and then apply
them to delay other devices of the same model.
1) By monitoring the device’s tra�c on idle state, devices

can be distinguished using on-demand sessions by their
intermi�ent TCP/TLS sessions. For devices that are
using long-live sessions, the packet length and period
of keep-alive messages can be observed.

2) By triggering normal messages of keep-alive devices, a
keep-alive pa�ern can be detected and con�rmed. If the
next keep-alive message is postponed accordingly, the
device has non-periodically keep-alive messages that
are exchanged when the session is idle. Otherwise, the
keep-alive messages are exchanged in a �xed period.

3) Timeout threshold of keep-alive messages can be mea-
sured by delaying a keep-alive message in idle state
until the timeout happens. �e interval between the
beginning of the delay and the occurring of timeout is
recorded as timeout period of keep-alive messages.

4) �e timeout threshold of normal (i.e., event and com-
mand) messages is measured using the same method
as that for keep-alive messages. �e message is in-
tentionally triggered right a�er a successful exchange
of a keep-alive message and delay it until timeout
happens. If the timeout occurs earlier than the antic-
ipated timeout of the next keep-alive message (which
is also delayed accordingly), this interval is recorded as
the timeout of the corresponding message. Otherwise,
it means the device does not implement a timeout
for normal message and the session timeout is solely
triggered by keep-alive messages.

Finally, the collected parameters can be veri�ed by ran-
domly delaying a message and predicting/observing the time-
out behaviors. �e parameters are considered to be correct
if the predicted timeout matches the real-world timeout.

In summary, the procedure for building the a�ack primi-
tives has the following steps. (1) Before launching the a�acks
at the victim environment, an a�acker selects popular IoT
devices as a�ack targets and pro�le their timeout behaviors.
Note that the pro�ling is one-time e�ort and the collected
knowledge can be shared among a�ackers. (2) �e a�acker
sni�s the network tra�c in the victim’s network and uses the
collected knowledge in the previous step to recognize victim

5

• TCP
• “picky” about delay

• TLS (Transport Layer Security)
• Cannot drop, inject, modify or disorder data packets

TCP TCP

Attacker

SSL/TLS

Outbound Queue

Inbound QueueIoT Device

MQTT/HTTP/... ...Application Layer
Transport Layer

Security

Transport Layer

IoT Server

Application Layer
Transport Layer

Security

Transport Layer

Fig. 2: Delaying IoT messages via a TCP hijacker.

ACKs. Hence, we focus on the timeout behavior at the
application layer. We �rst classify IoT messages into two
major types: (i) normal IoT event/command messages, and
(ii) keep-alive (also known as heartbeat) messages that are
used to check the connection quality and IoT device or
server’s liveness. We can describe an IoT device’s timeout
behaviors using three parameters:

• Timeout threshold of keep-alive messages. �is
parameter is only applicable to devices that use long-
live session because the purpose of keep-alive messages
is to detect and terminate non-responsive sessions.

• Pattern of keep-alive messages. �is parameter de-
scribes what condition will keep-alive messages be ex-
changed. Keep-alive messages are exchanged either in
a �xed period or non-periodically when the session
stays idle longer than a interval. �e keep-alive message
pa�ern comprises the period and strategy (�xed or on-
idle) of keep-alive messages.

• Timeout threshold of normal IoT messages. �is
parameter is only applicable to a portion of devices, as
some devices do not implement timeout for event and
command messages. For example, MQTT protocol does
not require timeout for normal messages.

With the three parameters, an a�acker can accurately
predict the happening of the incoming timeout of an IoT
device, and he can �ne-tune the delay imposed on the IoT
messages without causing timeouts.

C. A�ack Primitives
With the analysis of IoT network protocols, we obtain

two major insights: (1) We �nd that the timeout detection
provided by insecure layers (such as TCP) can be fooled.
(2) By observing the target device’s history tra�c, a�ackers
can derive the parameters to model the session timeout
behaviors. Based on the parameters, a�ackers can accurately
predict when timeout is to occur and achieve maximum delay
without causing device timeout. Following these insights,
we build two a�ack primitives, ��D���� and ��D����, for
delaying event and command messages, respectively.
TCP timeouts can be avoided with forged TCP ACKs. As

shown in Figure 2, for each device-to-server TCP connection,
via a TCP hijacker, a�ackers can split the connection between
the IoT device and the corresponding cloud server into two
separate TCP connections, with the TCP hijacker in the
middle. For each side’s connection, the a�acker can hold the
received packets, to incur a delay, before forwarding them to
the destination but acknowledge the receiving immediately.
If the delay is long and triggers the TCP’s keep-alive timeout,

the probing segments can be acknowledged using a forged
ACK to avoid connection termination. At the end of the delay,
all held packets are released so that the TLS MAC veri�cation
is not violated. �is way, transport layer protocols no longer
have any restrictions on the delay time.
Because of the encryption provided by TLS, we cannot

bypass the timeout checking of application layer protocols by
forging devices’ or server’s responses. Instead, we hold target
event messages until the moment right before an application
layer protocol timeout occurs. During the period of the delay,
any following messages are also delayed accordingly to avoid
breaking the sequence number checking of TLS.
We present the concrete steps to pro�le the parameters of a

device’s timeout behavior. A�ackers can perform these steps
on his own devices to collect parameters, and then apply
them to delay other devices of the same model.
1) By monitoring the device’s tra�c on idle state, devices

can be distinguished using on-demand sessions by their
intermi�ent TCP/TLS sessions. For devices that are
using long-live sessions, the packet length and period
of keep-alive messages can be observed.

2) By triggering normal messages of keep-alive devices, a
keep-alive pa�ern can be detected and con�rmed. If the
next keep-alive message is postponed accordingly, the
device has non-periodically keep-alive messages that
are exchanged when the session is idle. Otherwise, the
keep-alive messages are exchanged in a �xed period.

3) Timeout threshold of keep-alive messages can be mea-
sured by delaying a keep-alive message in idle state
until the timeout happens. �e interval between the
beginning of the delay and the occurring of timeout is
recorded as timeout period of keep-alive messages.

4) �e timeout threshold of normal (i.e., event and com-
mand) messages is measured using the same method
as that for keep-alive messages. �e message is in-
tentionally triggered right a�er a successful exchange
of a keep-alive message and delay it until timeout
happens. If the timeout occurs earlier than the antic-
ipated timeout of the next keep-alive message (which
is also delayed accordingly), this interval is recorded as
the timeout of the corresponding message. Otherwise,
it means the device does not implement a timeout
for normal message and the session timeout is solely
triggered by keep-alive messages.

Finally, the collected parameters can be veri�ed by ran-
domly delaying a message and predicting/observing the time-
out behaviors. �e parameters are considered to be correct
if the predicted timeout matches the real-world timeout.

In summary, the procedure for building the a�ack primi-
tives has the following steps. (1) Before launching the a�acks
at the victim environment, an a�acker selects popular IoT
devices as a�ack targets and pro�le their timeout behaviors.
Note that the pro�ling is one-time e�ort and the collected
knowledge can be shared among a�ackers. (2) �e a�acker
sni�s the network tra�c in the victim’s network and uses the
collected knowledge in the previous step to recognize victim

5

• TCP
• “picky” about delay

• TLS (Transport Layer Security)
• Cannot drop, inject, modify or disorder data packets

Key Insight 1:

Delay detection in the TCP layer is

decoupled from data protection by TLS

TCP TCP

Attacker

SSL/TLS

Outbound Queue

Inbound QueueIoT Device

MQTT/HTTP/... ...Application Layer
Transport Layer

Security

Transport Layer

IoT Server

Application Layer
Transport Layer

Security

Transport Layer

Fig. 2: Delaying IoT messages via a TCP hijacker.

ACKs. Hence, we focus on the timeout behavior at the
application layer. We �rst classify IoT messages into two
major types: (i) normal IoT event/command messages, and
(ii) keep-alive (also known as heartbeat) messages that are
used to check the connection quality and IoT device or
server’s liveness. We can describe an IoT device’s timeout
behaviors using three parameters:

• Timeout threshold of keep-alive messages. �is
parameter is only applicable to devices that use long-
live session because the purpose of keep-alive messages
is to detect and terminate non-responsive sessions.

• Pattern of keep-alive messages. �is parameter de-
scribes what condition will keep-alive messages be ex-
changed. Keep-alive messages are exchanged either in
a �xed period or non-periodically when the session
stays idle longer than a interval. �e keep-alive message
pa�ern comprises the period and strategy (�xed or on-
idle) of keep-alive messages.

• Timeout threshold of normal IoT messages. �is
parameter is only applicable to a portion of devices, as
some devices do not implement timeout for event and
command messages. For example, MQTT protocol does
not require timeout for normal messages.

With the three parameters, an a�acker can accurately
predict the happening of the incoming timeout of an IoT
device, and he can �ne-tune the delay imposed on the IoT
messages without causing timeouts.

C. A�ack Primitives
With the analysis of IoT network protocols, we obtain

two major insights: (1) We �nd that the timeout detection
provided by insecure layers (such as TCP) can be fooled.
(2) By observing the target device’s history tra�c, a�ackers
can derive the parameters to model the session timeout
behaviors. Based on the parameters, a�ackers can accurately
predict when timeout is to occur and achieve maximum delay
without causing device timeout. Following these insights,
we build two a�ack primitives, ��D���� and ��D����, for
delaying event and command messages, respectively.
TCP timeouts can be avoided with forged TCP ACKs. As

shown in Figure 2, for each device-to-server TCP connection,
via a TCP hijacker, a�ackers can split the connection between
the IoT device and the corresponding cloud server into two
separate TCP connections, with the TCP hijacker in the
middle. For each side’s connection, the a�acker can hold the
received packets, to incur a delay, before forwarding them to
the destination but acknowledge the receiving immediately.
If the delay is long and triggers the TCP’s keep-alive timeout,

the probing segments can be acknowledged using a forged
ACK to avoid connection termination. At the end of the delay,
all held packets are released so that the TLS MAC veri�cation
is not violated. �is way, transport layer protocols no longer
have any restrictions on the delay time.
Because of the encryption provided by TLS, we cannot

bypass the timeout checking of application layer protocols by
forging devices’ or server’s responses. Instead, we hold target
event messages until the moment right before an application
layer protocol timeout occurs. During the period of the delay,
any following messages are also delayed accordingly to avoid
breaking the sequence number checking of TLS.
We present the concrete steps to pro�le the parameters of a

device’s timeout behavior. A�ackers can perform these steps
on his own devices to collect parameters, and then apply
them to delay other devices of the same model.
1) By monitoring the device’s tra�c on idle state, devices

can be distinguished using on-demand sessions by their
intermi�ent TCP/TLS sessions. For devices that are
using long-live sessions, the packet length and period
of keep-alive messages can be observed.

2) By triggering normal messages of keep-alive devices, a
keep-alive pa�ern can be detected and con�rmed. If the
next keep-alive message is postponed accordingly, the
device has non-periodically keep-alive messages that
are exchanged when the session is idle. Otherwise, the
keep-alive messages are exchanged in a �xed period.

3) Timeout threshold of keep-alive messages can be mea-
sured by delaying a keep-alive message in idle state
until the timeout happens. �e interval between the
beginning of the delay and the occurring of timeout is
recorded as timeout period of keep-alive messages.

4) �e timeout threshold of normal (i.e., event and com-
mand) messages is measured using the same method
as that for keep-alive messages. �e message is in-
tentionally triggered right a�er a successful exchange
of a keep-alive message and delay it until timeout
happens. If the timeout occurs earlier than the antic-
ipated timeout of the next keep-alive message (which
is also delayed accordingly), this interval is recorded as
the timeout of the corresponding message. Otherwise,
it means the device does not implement a timeout
for normal message and the session timeout is solely
triggered by keep-alive messages.

Finally, the collected parameters can be veri�ed by ran-
domly delaying a message and predicting/observing the time-
out behaviors. �e parameters are considered to be correct
if the predicted timeout matches the real-world timeout.

In summary, the procedure for building the a�ack primi-
tives has the following steps. (1) Before launching the a�acks
at the victim environment, an a�acker selects popular IoT
devices as a�ack targets and pro�le their timeout behaviors.
Note that the pro�ling is one-time e�ort and the collected
knowledge can be shared among a�ackers. (2) �e a�acker
sni�s the network tra�c in the victim’s network and uses the
collected knowledge in the previous step to recognize victim

5

TCP TCP

Attacker

SSL/TLS

Outbound Queue

Inbound QueueIoT Device

MQTT/HTTP/... ...Application Layer
Transport Layer

Security

Transport Layer

IoT Server

Application Layer
Transport Layer

Security

Transport Layer

Fig. 2: Delaying IoT messages via a TCP hijacker.

ACKs. Hence, we focus on the timeout behavior at the
application layer. We �rst classify IoT messages into two
major types: (i) normal IoT event/command messages, and
(ii) keep-alive (also known as heartbeat) messages that are
used to check the connection quality and IoT device or
server’s liveness. We can describe an IoT device’s timeout
behaviors using three parameters:

• Timeout threshold of keep-alive messages. �is
parameter is only applicable to devices that use long-
live session because the purpose of keep-alive messages
is to detect and terminate non-responsive sessions.

• Pattern of keep-alive messages. �is parameter de-
scribes what condition will keep-alive messages be ex-
changed. Keep-alive messages are exchanged either in
a �xed period or non-periodically when the session
stays idle longer than a interval. �e keep-alive message
pa�ern comprises the period and strategy (�xed or on-
idle) of keep-alive messages.

• Timeout threshold of normal IoT messages. �is
parameter is only applicable to a portion of devices, as
some devices do not implement timeout for event and
command messages. For example, MQTT protocol does
not require timeout for normal messages.

With the three parameters, an a�acker can accurately
predict the happening of the incoming timeout of an IoT
device, and he can �ne-tune the delay imposed on the IoT
messages without causing timeouts.

C. A�ack Primitives
With the analysis of IoT network protocols, we obtain

two major insights: (1) We �nd that the timeout detection
provided by insecure layers (such as TCP) can be fooled.
(2) By observing the target device’s history tra�c, a�ackers
can derive the parameters to model the session timeout
behaviors. Based on the parameters, a�ackers can accurately
predict when timeout is to occur and achieve maximum delay
without causing device timeout. Following these insights,
we build two a�ack primitives, ��D���� and ��D����, for
delaying event and command messages, respectively.
TCP timeouts can be avoided with forged TCP ACKs. As

shown in Figure 2, for each device-to-server TCP connection,
via a TCP hijacker, a�ackers can split the connection between
the IoT device and the corresponding cloud server into two
separate TCP connections, with the TCP hijacker in the
middle. For each side’s connection, the a�acker can hold the
received packets, to incur a delay, before forwarding them to
the destination but acknowledge the receiving immediately.
If the delay is long and triggers the TCP’s keep-alive timeout,

the probing segments can be acknowledged using a forged
ACK to avoid connection termination. At the end of the delay,
all held packets are released so that the TLS MAC veri�cation
is not violated. �is way, transport layer protocols no longer
have any restrictions on the delay time.
Because of the encryption provided by TLS, we cannot

bypass the timeout checking of application layer protocols by
forging devices’ or server’s responses. Instead, we hold target
event messages until the moment right before an application
layer protocol timeout occurs. During the period of the delay,
any following messages are also delayed accordingly to avoid
breaking the sequence number checking of TLS.
We present the concrete steps to pro�le the parameters of a

device’s timeout behavior. A�ackers can perform these steps
on his own devices to collect parameters, and then apply
them to delay other devices of the same model.
1) By monitoring the device’s tra�c on idle state, devices

can be distinguished using on-demand sessions by their
intermi�ent TCP/TLS sessions. For devices that are
using long-live sessions, the packet length and period
of keep-alive messages can be observed.

2) By triggering normal messages of keep-alive devices, a
keep-alive pa�ern can be detected and con�rmed. If the
next keep-alive message is postponed accordingly, the
device has non-periodically keep-alive messages that
are exchanged when the session is idle. Otherwise, the
keep-alive messages are exchanged in a �xed period.

3) Timeout threshold of keep-alive messages can be mea-
sured by delaying a keep-alive message in idle state
until the timeout happens. �e interval between the
beginning of the delay and the occurring of timeout is
recorded as timeout period of keep-alive messages.

4) �e timeout threshold of normal (i.e., event and com-
mand) messages is measured using the same method
as that for keep-alive messages. �e message is in-
tentionally triggered right a�er a successful exchange
of a keep-alive message and delay it until timeout
happens. If the timeout occurs earlier than the antic-
ipated timeout of the next keep-alive message (which
is also delayed accordingly), this interval is recorded as
the timeout of the corresponding message. Otherwise,
it means the device does not implement a timeout
for normal message and the session timeout is solely
triggered by keep-alive messages.

Finally, the collected parameters can be veri�ed by ran-
domly delaying a message and predicting/observing the time-
out behaviors. �e parameters are considered to be correct
if the predicted timeout matches the real-world timeout.

In summary, the procedure for building the a�ack primi-
tives has the following steps. (1) Before launching the a�acks
at the victim environment, an a�acker selects popular IoT
devices as a�ack targets and pro�le their timeout behaviors.
Note that the pro�ling is one-time e�ort and the collected
knowledge can be shared among a�ackers. (2) �e a�acker
sni�s the network tra�c in the victim’s network and uses the
collected knowledge in the previous step to recognize victim

5

Fake ACK Fake ACK

TCP TCP

Attacker

SSL/TLS

Outbound Queue

Inbound QueueIoT Device

MQTT/HTTP/... ...Application Layer
Transport Layer

Security

Transport Layer

IoT Server

Application Layer
Transport Layer

Security

Transport Layer

Fig. 2: Delaying IoT messages via a TCP hijacker.

ACKs. Hence, we focus on the timeout behavior at the
application layer. We �rst classify IoT messages into two
major types: (i) normal IoT event/command messages, and
(ii) keep-alive (also known as heartbeat) messages that are
used to check the connection quality and IoT device or
server’s liveness. We can describe an IoT device’s timeout
behaviors using three parameters:

• Timeout threshold of keep-alive messages. �is
parameter is only applicable to devices that use long-
live session because the purpose of keep-alive messages
is to detect and terminate non-responsive sessions.

• Pattern of keep-alive messages. �is parameter de-
scribes what condition will keep-alive messages be ex-
changed. Keep-alive messages are exchanged either in
a �xed period or non-periodically when the session
stays idle longer than a interval. �e keep-alive message
pa�ern comprises the period and strategy (�xed or on-
idle) of keep-alive messages.

• Timeout threshold of normal IoT messages. �is
parameter is only applicable to a portion of devices, as
some devices do not implement timeout for event and
command messages. For example, MQTT protocol does
not require timeout for normal messages.

With the three parameters, an a�acker can accurately
predict the happening of the incoming timeout of an IoT
device, and he can �ne-tune the delay imposed on the IoT
messages without causing timeouts.

C. A�ack Primitives
With the analysis of IoT network protocols, we obtain

two major insights: (1) We �nd that the timeout detection
provided by insecure layers (such as TCP) can be fooled.
(2) By observing the target device’s history tra�c, a�ackers
can derive the parameters to model the session timeout
behaviors. Based on the parameters, a�ackers can accurately
predict when timeout is to occur and achieve maximum delay
without causing device timeout. Following these insights,
we build two a�ack primitives, ��D���� and ��D����, for
delaying event and command messages, respectively.
TCP timeouts can be avoided with forged TCP ACKs. As

shown in Figure 2, for each device-to-server TCP connection,
via a TCP hijacker, a�ackers can split the connection between
the IoT device and the corresponding cloud server into two
separate TCP connections, with the TCP hijacker in the
middle. For each side’s connection, the a�acker can hold the
received packets, to incur a delay, before forwarding them to
the destination but acknowledge the receiving immediately.
If the delay is long and triggers the TCP’s keep-alive timeout,

the probing segments can be acknowledged using a forged
ACK to avoid connection termination. At the end of the delay,
all held packets are released so that the TLS MAC veri�cation
is not violated. �is way, transport layer protocols no longer
have any restrictions on the delay time.
Because of the encryption provided by TLS, we cannot

bypass the timeout checking of application layer protocols by
forging devices’ or server’s responses. Instead, we hold target
event messages until the moment right before an application
layer protocol timeout occurs. During the period of the delay,
any following messages are also delayed accordingly to avoid
breaking the sequence number checking of TLS.
We present the concrete steps to pro�le the parameters of a

device’s timeout behavior. A�ackers can perform these steps
on his own devices to collect parameters, and then apply
them to delay other devices of the same model.
1) By monitoring the device’s tra�c on idle state, devices

can be distinguished using on-demand sessions by their
intermi�ent TCP/TLS sessions. For devices that are
using long-live sessions, the packet length and period
of keep-alive messages can be observed.

2) By triggering normal messages of keep-alive devices, a
keep-alive pa�ern can be detected and con�rmed. If the
next keep-alive message is postponed accordingly, the
device has non-periodically keep-alive messages that
are exchanged when the session is idle. Otherwise, the
keep-alive messages are exchanged in a �xed period.

3) Timeout threshold of keep-alive messages can be mea-
sured by delaying a keep-alive message in idle state
until the timeout happens. �e interval between the
beginning of the delay and the occurring of timeout is
recorded as timeout period of keep-alive messages.

4) �e timeout threshold of normal (i.e., event and com-
mand) messages is measured using the same method
as that for keep-alive messages. �e message is in-
tentionally triggered right a�er a successful exchange
of a keep-alive message and delay it until timeout
happens. If the timeout occurs earlier than the antic-
ipated timeout of the next keep-alive message (which
is also delayed accordingly), this interval is recorded as
the timeout of the corresponding message. Otherwise,
it means the device does not implement a timeout
for normal message and the session timeout is solely
triggered by keep-alive messages.

Finally, the collected parameters can be veri�ed by ran-
domly delaying a message and predicting/observing the time-
out behaviors. �e parameters are considered to be correct
if the predicted timeout matches the real-world timeout.

In summary, the procedure for building the a�ack primi-
tives has the following steps. (1) Before launching the a�acks
at the victim environment, an a�acker selects popular IoT
devices as a�ack targets and pro�le their timeout behaviors.
Note that the pro�ling is one-time e�ort and the collected
knowledge can be shared among a�ackers. (2) �e a�acker
sni�s the network tra�c in the victim’s network and uses the
collected knowledge in the previous step to recognize victim

5

What if the attacker injects fake TCP ACK packets and delays TLS
packets?

TCP will not complain!

TLS will not complain either!

The delay is only constrained by the Application layer, which we find
is quite insensitive to delay

Fake ACK Fake ACK

Questions…
• How to hijack the TCP traffic?

8

Questions…
• How to hijack the TCP traffic?

• ARP spoofing: easy to launch [IoTInspector: IMWUT’20]
• Shared network, Hotel, office, campus, remote attacker … …

• How to infer IoT messages from encrypted traffic?

8

Questions…
• How to hijack the TCP traffic?

• ARP spoofing: easy to launch [IoTInspector: IMWUT’20]
• Shared network, Hotel, office, campus, remote attacker … …

• How to infer IoT messages from encrypted traffic?
• Side-channel attacks: packet length, DNS query, …
• Accuracy: 97% [PingPong: NDSS’20]

• What is the delay constraint imposed on the App layer?

8

Questions…
• How to hijack the TCP traffic?

• ARP spoofing: easy to launch [IoTInspector: IMWUT’20]
• Shared network, Hotel, office, campus, remote attacker … …

• How to infer IoT messages from encrypted traffic?
• Side-channel attacks: packet length, DNS query, …
• Accuracy: 97% [PingPong: NDSS’20]

• What is the delay constraint imposed on the App layer?
• Challenges: diverse IoT devices + proprietary protocols

8

Questions…
• How to hijack the TCP traffic?

• ARP spoofing: easy to launch [IoTInspector: IMWUT’20]
• Shared network, Hotel, office, campus, remote attacker … …

• How to infer IoT messages from encrypted traffic?
• Side-channel attacks: packet length, DNS query, …
• Accuracy: 97% [PingPong: NDSS’20]

• What is the delay constraint imposed on the App layer?
• Challenges: diverse IoT devices + proprietary protocols
• The first large-scale study of IoT timeout behavior

8

Questions…
• How to hijack the TCP traffic?

• ARP spoofing: easy to launch [IoTInspector: IMWUT’20]
• Shared network, Hotel, office, campus, remote attacker … …

• How to infer IoT messages from encrypted traffic?
• Side-channel attacks: packet length, DNS query, …
• Accuracy: 97% [PingPong: NDSS’20]

• What is the delay constraint imposed on the App layer?
• Challenges: diverse IoT devices + proprietary protocols
• The first large-scale study of IoT timeout behavior

• A normal message must be ack-ed within a threshold?

8

Questions…
• How to hijack the TCP traffic?

• ARP spoofing: easy to launch [IoTInspector: IMWUT’20]
• Shared network, Hotel, office, campus, remote attacker … …

• How to infer IoT messages from encrypted traffic?
• Side-channel attacks: packet length, DNS query, …
• Accuracy: 97% [PingPong: NDSS’20]

• What is the delay constraint imposed on the App layer?
• Challenges: diverse IoT devices + proprietary protocols
• The first large-scale study of IoT timeout behavior

• A normal message must be ack-ed within a threshold?
• A keep-alive message must be ack-ed within a threshold?

8

Questions…
• How to hijack the TCP traffic?

• ARP spoofing: easy to launch [IoTInspector: IMWUT’20]
• Shared network, Hotel, office, campus, remote attacker … …

• How to infer IoT messages from encrypted traffic?
• Side-channel attacks: packet length, DNS query, …
• Accuracy: 97% [PingPong: NDSS’20]

• What is the delay constraint imposed on the App layer?
• Challenges: diverse IoT devices + proprietary protocols
• The first large-scale study of IoT timeout behavior

• A normal message must be ack-ed within a threshold?
• A keep-alive message must be ack-ed within a threshold?
• Categorization?

8

Application Layer Timeout Behavior

• Two types of messages

• Normal messages: on occurring of events/commands

• Keep-alive messages: periodically exchanged

• Timeout Behavior Measurement

• Keep-alive pattern: on-idle/periodic, length of period

• Message timeout

• Normal message timeout

• Keep-alive message timeout

• Predicting the happening of timeout while delaying a normal message

KA Event/

Command

Delay
Starts

Predicted

next KA

Predicted

Message

Timeout

Predicted

KA
Timeout

Delay
ends

TABLE I: Measurement results of devices with cloud IoT servers.

No. Device
Type Device Model App

Install
Long-live
Session

Keep-alive Messages Event Messages Command Messages
Period(s) Pa�ern Timeout(s) Timeout(s) Range(s) Timeout(s) Range(s)

L1 Smart
Light

Wyze White A19 1M+ Yes 62 �xed 60 60 [60, 60] 60 [60, 60]
L2 Philips Hue white A19 1M+ Yes 120 �xed 60 1 [60, 180] 21 [21, 21]
P1

Smart
Plug

Wyze Plug 1M+ Yes 62 �xed 60 60 [60, 60] 60 [60, 60]
P2 Amazon Plug 50M+ Yes 30 �xed 30 30 [30, 30] 30 [30, 30]
P3 Smart�ings WiFi Plug 100M+ Yes 110 on-idle 110 1 [110, 220] 1 [110, 220]
P4 Smart�ings Zigbee Plug 100M+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]
P5 SmartLife Gosound Plug 5M+ Yes 60 on-idle 32 1 [32, 92] 1 [32, 92]
P6 KASA HS103P2 Plug 1M+ Yes 150 �xed 15 55 [15, 55] 15 [15, 15]
P7 Cync 100K+ Yes 21 on-idle 84 1 [84, 105] 1 [84, 105]
P8 iHome iSP6X Plug 100K+ Yes 30 �xed 18 32 [18, 32] 32 [18, 32]
P9 Aqara Plug 50K+ Yes 150 �xed 30 60 [30, 60] 30 [30, 30]
P10 Wemo Mini Plug 1M+ No - - - 52 [52, 52] 15 [15, 15]
P11 Geeni Plug 1M+ No - - - 90 [90, 90] 25 [25, 25]
M1

Motion
Sensor

Smart�ings Motion 100M+ Yes 31 on-idle 16 1 [16, 47] - -
M2 Philips Hue Motion 1M+ Yes 120 �xed 60 1 [60, 180] - -
M3 Wyze Motion 1M+ Yes 62 �xed 60 60 [60, 60] - -
M4 Ring Motion 5M+ Yes 30 �xed 35 1 [35, 65] - -
M5 Nest Motion 5M+ Yes 120 on-idle 60 1 [60, 180] - -
M6 Ecobee Smart Sensor 500K+ Yes 60 on-idle 30 1 [30, 90] - -
M7 SmartLife Sonew Motion 5M+ No - - - 260 [260, 260] - -
M8 iHome iSB01 Motion 100K+ No - - - 70 [70, 70] - -
M9 Aqara Motion 50K+ Yes 150 �xed 30 60 [30, 60] - -
M10 Govee Motion 50K+ Yes 90 �xed 35 55 [35, 55] - -
M11 Amazon Echo Flex 50M+ Yes 30 on-idle 30 60 [30, 60] - -
C1

Contact
Sensor

Smart�ings multipurpose 100M+ Yes 31 on-idle 16 1 [16, 47] - -
C2 Wyze Contact 1M+ Yes 62 �xed 60 60 [60, 60] - -
C3 Nest Contact 5M+ Yes 120 on-idle 60 1 [60, 180] - -
C4 Ecobee Smartsensor 50K+ Yes 60 on-idle 30 1 [30, 90] - -
C5 SmartLife Towode Contact 5M+ No - - - 130 [130, 130] - -
C6 iHome iSB04 Contact 100K+ No - - - 70 [70, 70] - -
C7 Aqara Contact 50K+ Yes 150 �xed 30 60 [30, 60] - -
C8 Ring Contact 5M+ Yes 30 �xed 35 1 [35, 65] - -
C9 Geeni Door & Window 1M+ No - - - 90 [90, 90] - -
C10 Govee door 500K+ Yes 90 �xed 35 55 [35, 55] - -
HS1 Home

Security

Ring Keypad 5M+ Yes 30 �xed 35 1 [35, 65] - -
HS2 Nest Keypad 5M+ Yes 120 on-idle 60 1 [60, 180] - -
HS3 SimpliSafe Keypad 5M+ Yes 55 �xed 30 20 [20, 20] - -
S1

Smart
Switch

Smart�ings bu�on 100M+ Yes 31 on-idle 16 1 [16, 47] - -
S2 Philips Hue Dimmer 1M+ Yes 120 �xed 60 1 [60, 180] - -
S3 �irdReality Switch 1K+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]
S4 Aqara Bu�on 50K+ Yes 150 �xed 30 60 [30, 60] - -
CM1

Smart
Camera

Arlo Q 1M+ No - - - 60 [60, 60] - -
CM2 Wyze Cam Indoor 1M+ Yes 62 �xed 60 60 [60, 60] - -
CM3 Ring Doorbell 5M+ Yes 55 �xed 25 31 [29, 31] - -
CM4 Foscam R2C 1M+ Yes 150 �xed 45 30 [30, 30] - -
CM5 YiHome Cam Indoor 1M+ Yes 45 on-idle 30 1 [30, 74] - -
LC1 Smart

Lock
August Pro Gen2 500K+ Yes 70 on-idle 30 58 [30, 58] 58 [30, 58]

LC2 Kwikset Smartcode 913 50K+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]

cloud) and 42 bytes (cloud to hub) in every 31 seconds.
When an event or command message happens, the next keep-
alive messages will always occur 31 seconds later. When we
a�empt to delay keep-alive messages, we observe a constant
timeout threshold of 16 seconds. A�er that, we trigger and
delay event and command messages right a�er keep-alive
messages and �nd the session timeout still happens 16
seconds a�er the next keep-alive message. �is implies that
the Smart�ings session timeout is solely triggered by keep-
alive messages. We con�rm that by randomly triggering and
delaying event and command messages and con�rmed that
timeouts always happen 16 seconds a�er the starting of delay
of a keep-alive message. For Philips Hue Light bulb (L2) and
dimmer switch (S2) that are using the Philips Hue bridge,
we observe a �xed keep-alive period of 120-second period,
which is independent from the event and command messages.
During the 20-trial experiment, delay of command messages
consistently causes session timeout a�er 21 seconds. While,
in trials of event message delays, timeout always happens
60 seconds a�er a keep-alive message, which means there is

no dedicated timeout for event messages. In summary, event
messages of Philip Hue devices can be delayed in the range of
[60s, 180s], which depends on the interval between the event
message and the next keep-alive message and their command
messages can be consistently delayed for 21 seconds.
To verify the collected parameters in Table I, we also

conduct a veri�cation test. For each testing device, we ran-
domly trigger and delay its messages and predict the timeout
occurrence according to the collected parameters. We end the
delay and release the holding messages 2 seconds before the
predicted timeout. �e results show that not only the timeout
is 100% avoided, but also the delayed messages are accepted
by the device or cloud server.
2) Results of Local-based IoT Devices: For measuring de-

vices’ delays with local IoT servers, we choose Apple’s Home-
Kit as the representative IoT server and connect compatible
devices, as listed in Table II, to a HomePod speaker using the
Home+ mobile application [13] from Apple’s App Store. �e
measurement results show that the HomeKit platform has a
much severer problem. Even though devices are using long-

8

10

TABLE I: Measurement results of devices with cloud IoT servers.

No. Device
Type Device Model App

Install
Long-live
Session

Keep-alive Messages Event Messages Command Messages
Period(s) Pa�ern Timeout(s) Timeout(s) Range(s) Timeout(s) Range(s)

L1 Smart
Light

Wyze White A19 1M+ Yes 62 �xed 60 60 [60, 60] 60 [60, 60]
L2 Philips Hue white A19 1M+ Yes 120 �xed 60 1 [60, 180] 21 [21, 21]
P1

Smart
Plug

Wyze Plug 1M+ Yes 62 �xed 60 60 [60, 60] 60 [60, 60]
P2 Amazon Plug 50M+ Yes 30 �xed 30 30 [30, 30] 30 [30, 30]
P3 Smart�ings WiFi Plug 100M+ Yes 110 on-idle 110 1 [110, 220] 1 [110, 220]
P4 Smart�ings Zigbee Plug 100M+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]
P5 SmartLife Gosound Plug 5M+ Yes 60 on-idle 32 1 [32, 92] 1 [32, 92]
P6 KASA HS103P2 Plug 1M+ Yes 150 �xed 15 55 [15, 55] 15 [15, 15]
P7 Cync 100K+ Yes 21 on-idle 84 1 [84, 105] 1 [84, 105]
P8 iHome iSP6X Plug 100K+ Yes 30 �xed 18 32 [18, 32] 32 [18, 32]
P9 Aqara Plug 50K+ Yes 150 �xed 30 60 [30, 60] 30 [30, 30]
P10 Wemo Mini Plug 1M+ No - - - 52 [52, 52] 15 [15, 15]
P11 Geeni Plug 1M+ No - - - 90 [90, 90] 25 [25, 25]
M1

Motion
Sensor

Smart�ings Motion 100M+ Yes 31 on-idle 16 1 [16, 47] - -
M2 Philips Hue Motion 1M+ Yes 120 �xed 60 1 [60, 180] - -
M3 Wyze Motion 1M+ Yes 62 �xed 60 60 [60, 60] - -
M4 Ring Motion 5M+ Yes 30 �xed 35 1 [35, 65] - -
M5 Nest Motion 5M+ Yes 120 on-idle 60 1 [60, 180] - -
M6 Ecobee Smart Sensor 500K+ Yes 60 on-idle 30 1 [30, 90] - -
M7 SmartLife Sonew Motion 5M+ No - - - 260 [260, 260] - -
M8 iHome iSB01 Motion 100K+ No - - - 70 [70, 70] - -
M9 Aqara Motion 50K+ Yes 150 �xed 30 60 [30, 60] - -
M10 Govee Motion 50K+ Yes 90 �xed 35 55 [35, 55] - -
M11 Amazon Echo Flex 50M+ Yes 30 on-idle 30 60 [30, 60] - -
C1

Contact
Sensor

Smart�ings multipurpose 100M+ Yes 31 on-idle 16 1 [16, 47] - -
C2 Wyze Contact 1M+ Yes 62 �xed 60 60 [60, 60] - -
C3 Nest Contact 5M+ Yes 120 on-idle 60 1 [60, 180] - -
C4 Ecobee Smartsensor 50K+ Yes 60 on-idle 30 1 [30, 90] - -
C5 SmartLife Towode Contact 5M+ No - - - 130 [130, 130] - -
C6 iHome iSB04 Contact 100K+ No - - - 70 [70, 70] - -
C7 Aqara Contact 50K+ Yes 150 �xed 30 60 [30, 60] - -
C8 Ring Contact 5M+ Yes 30 �xed 35 1 [35, 65] - -
C9 Geeni Door & Window 1M+ No - - - 90 [90, 90] - -
C10 Govee door 500K+ Yes 90 �xed 35 55 [35, 55] - -
HS1 Home

Security

Ring Keypad 5M+ Yes 30 �xed 35 1 [35, 65] - -
HS2 Nest Keypad 5M+ Yes 120 on-idle 60 1 [60, 180] - -
HS3 SimpliSafe Keypad 5M+ Yes 55 �xed 30 20 [20, 20] - -
S1

Smart
Switch

Smart�ings bu�on 100M+ Yes 31 on-idle 16 1 [16, 47] - -
S2 Philips Hue Dimmer 1M+ Yes 120 �xed 60 1 [60, 180] - -
S3 �irdReality Switch 1K+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]
S4 Aqara Bu�on 50K+ Yes 150 �xed 30 60 [30, 60] - -
CM1

Smart
Camera

Arlo Q 1M+ No - - - 60 [60, 60] - -
CM2 Wyze Cam Indoor 1M+ Yes 62 �xed 60 60 [60, 60] - -
CM3 Ring Doorbell 5M+ Yes 55 �xed 25 31 [29, 31] - -
CM4 Foscam R2C 1M+ Yes 150 �xed 45 30 [30, 30] - -
CM5 YiHome Cam Indoor 1M+ Yes 45 on-idle 30 1 [30, 74] - -
LC1 Smart

Lock
August Pro Gen2 500K+ Yes 70 on-idle 30 58 [30, 58] 58 [30, 58]

LC2 Kwikset Smartcode 913 50K+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]

cloud) and 42 bytes (cloud to hub) in every 31 seconds.
When an event or command message happens, the next keep-
alive messages will always occur 31 seconds later. When we
a�empt to delay keep-alive messages, we observe a constant
timeout threshold of 16 seconds. A�er that, we trigger and
delay event and command messages right a�er keep-alive
messages and �nd the session timeout still happens 16
seconds a�er the next keep-alive message. �is implies that
the Smart�ings session timeout is solely triggered by keep-
alive messages. We con�rm that by randomly triggering and
delaying event and command messages and con�rmed that
timeouts always happen 16 seconds a�er the starting of delay
of a keep-alive message. For Philips Hue Light bulb (L2) and
dimmer switch (S2) that are using the Philips Hue bridge,
we observe a �xed keep-alive period of 120-second period,
which is independent from the event and command messages.
During the 20-trial experiment, delay of command messages
consistently causes session timeout a�er 21 seconds. While,
in trials of event message delays, timeout always happens
60 seconds a�er a keep-alive message, which means there is

no dedicated timeout for event messages. In summary, event
messages of Philip Hue devices can be delayed in the range of
[60s, 180s], which depends on the interval between the event
message and the next keep-alive message and their command
messages can be consistently delayed for 21 seconds.
To verify the collected parameters in Table I, we also

conduct a veri�cation test. For each testing device, we ran-
domly trigger and delay its messages and predict the timeout
occurrence according to the collected parameters. We end the
delay and release the holding messages 2 seconds before the
predicted timeout. �e results show that not only the timeout
is 100% avoided, but also the delayed messages are accepted
by the device or cloud server.
2) Results of Local-based IoT Devices: For measuring de-

vices’ delays with local IoT servers, we choose Apple’s Home-
Kit as the representative IoT server and connect compatible
devices, as listed in Table II, to a HomePod speaker using the
Home+ mobile application [13] from Apple’s App Store. �e
measurement results show that the HomeKit platform has a
much severer problem. Even though devices are using long-

8

10

TABLE I: Measurement results of devices with cloud IoT servers.

No. Device
Type Device Model App

Install
Long-live
Session

Keep-alive Messages Event Messages Command Messages
Period(s) Pa�ern Timeout(s) Timeout(s) Range(s) Timeout(s) Range(s)

L1 Smart
Light

Wyze White A19 1M+ Yes 62 �xed 60 60 [60, 60] 60 [60, 60]
L2 Philips Hue white A19 1M+ Yes 120 �xed 60 1 [60, 180] 21 [21, 21]
P1

Smart
Plug

Wyze Plug 1M+ Yes 62 �xed 60 60 [60, 60] 60 [60, 60]
P2 Amazon Plug 50M+ Yes 30 �xed 30 30 [30, 30] 30 [30, 30]
P3 Smart�ings WiFi Plug 100M+ Yes 110 on-idle 110 1 [110, 220] 1 [110, 220]
P4 Smart�ings Zigbee Plug 100M+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]
P5 SmartLife Gosound Plug 5M+ Yes 60 on-idle 32 1 [32, 92] 1 [32, 92]
P6 KASA HS103P2 Plug 1M+ Yes 150 �xed 15 55 [15, 55] 15 [15, 15]
P7 Cync 100K+ Yes 21 on-idle 84 1 [84, 105] 1 [84, 105]
P8 iHome iSP6X Plug 100K+ Yes 30 �xed 18 32 [18, 32] 32 [18, 32]
P9 Aqara Plug 50K+ Yes 150 �xed 30 60 [30, 60] 30 [30, 30]
P10 Wemo Mini Plug 1M+ No - - - 52 [52, 52] 15 [15, 15]
P11 Geeni Plug 1M+ No - - - 90 [90, 90] 25 [25, 25]
M1

Motion
Sensor

Smart�ings Motion 100M+ Yes 31 on-idle 16 1 [16, 47] - -
M2 Philips Hue Motion 1M+ Yes 120 �xed 60 1 [60, 180] - -
M3 Wyze Motion 1M+ Yes 62 �xed 60 60 [60, 60] - -
M4 Ring Motion 5M+ Yes 30 �xed 35 1 [35, 65] - -
M5 Nest Motion 5M+ Yes 120 on-idle 60 1 [60, 180] - -
M6 Ecobee Smart Sensor 500K+ Yes 60 on-idle 30 1 [30, 90] - -
M7 SmartLife Sonew Motion 5M+ No - - - 260 [260, 260] - -
M8 iHome iSB01 Motion 100K+ No - - - 70 [70, 70] - -
M9 Aqara Motion 50K+ Yes 150 �xed 30 60 [30, 60] - -
M10 Govee Motion 50K+ Yes 90 �xed 35 55 [35, 55] - -
M11 Amazon Echo Flex 50M+ Yes 30 on-idle 30 60 [30, 60] - -
C1

Contact
Sensor

Smart�ings multipurpose 100M+ Yes 31 on-idle 16 1 [16, 47] - -
C2 Wyze Contact 1M+ Yes 62 �xed 60 60 [60, 60] - -
C3 Nest Contact 5M+ Yes 120 on-idle 60 1 [60, 180] - -
C4 Ecobee Smartsensor 50K+ Yes 60 on-idle 30 1 [30, 90] - -
C5 SmartLife Towode Contact 5M+ No - - - 130 [130, 130] - -
C6 iHome iSB04 Contact 100K+ No - - - 70 [70, 70] - -
C7 Aqara Contact 50K+ Yes 150 �xed 30 60 [30, 60] - -
C8 Ring Contact 5M+ Yes 30 �xed 35 1 [35, 65] - -
C9 Geeni Door & Window 1M+ No - - - 90 [90, 90] - -
C10 Govee door 500K+ Yes 90 �xed 35 55 [35, 55] - -
HS1 Home

Security

Ring Keypad 5M+ Yes 30 �xed 35 1 [35, 65] - -
HS2 Nest Keypad 5M+ Yes 120 on-idle 60 1 [60, 180] - -
HS3 SimpliSafe Keypad 5M+ Yes 55 �xed 30 20 [20, 20] - -
S1

Smart
Switch

Smart�ings bu�on 100M+ Yes 31 on-idle 16 1 [16, 47] - -
S2 Philips Hue Dimmer 1M+ Yes 120 �xed 60 1 [60, 180] - -
S3 �irdReality Switch 1K+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]
S4 Aqara Bu�on 50K+ Yes 150 �xed 30 60 [30, 60] - -
CM1

Smart
Camera

Arlo Q 1M+ No - - - 60 [60, 60] - -
CM2 Wyze Cam Indoor 1M+ Yes 62 �xed 60 60 [60, 60] - -
CM3 Ring Doorbell 5M+ Yes 55 �xed 25 31 [29, 31] - -
CM4 Foscam R2C 1M+ Yes 150 �xed 45 30 [30, 30] - -
CM5 YiHome Cam Indoor 1M+ Yes 45 on-idle 30 1 [30, 74] - -
LC1 Smart

Lock
August Pro Gen2 500K+ Yes 70 on-idle 30 58 [30, 58] 58 [30, 58]

LC2 Kwikset Smartcode 913 50K+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]

cloud) and 42 bytes (cloud to hub) in every 31 seconds.
When an event or command message happens, the next keep-
alive messages will always occur 31 seconds later. When we
a�empt to delay keep-alive messages, we observe a constant
timeout threshold of 16 seconds. A�er that, we trigger and
delay event and command messages right a�er keep-alive
messages and �nd the session timeout still happens 16
seconds a�er the next keep-alive message. �is implies that
the Smart�ings session timeout is solely triggered by keep-
alive messages. We con�rm that by randomly triggering and
delaying event and command messages and con�rmed that
timeouts always happen 16 seconds a�er the starting of delay
of a keep-alive message. For Philips Hue Light bulb (L2) and
dimmer switch (S2) that are using the Philips Hue bridge,
we observe a �xed keep-alive period of 120-second period,
which is independent from the event and command messages.
During the 20-trial experiment, delay of command messages
consistently causes session timeout a�er 21 seconds. While,
in trials of event message delays, timeout always happens
60 seconds a�er a keep-alive message, which means there is

no dedicated timeout for event messages. In summary, event
messages of Philip Hue devices can be delayed in the range of
[60s, 180s], which depends on the interval between the event
message and the next keep-alive message and their command
messages can be consistently delayed for 21 seconds.
To verify the collected parameters in Table I, we also

conduct a veri�cation test. For each testing device, we ran-
domly trigger and delay its messages and predict the timeout
occurrence according to the collected parameters. We end the
delay and release the holding messages 2 seconds before the
predicted timeout. �e results show that not only the timeout
is 100% avoided, but also the delayed messages are accepted
by the device or cloud server.
2) Results of Local-based IoT Devices: For measuring de-

vices’ delays with local IoT servers, we choose Apple’s Home-
Kit as the representative IoT server and connect compatible
devices, as listed in Table II, to a HomePod speaker using the
Home+ mobile application [13] from Apple’s App Store. �e
measurement results show that the HomeKit platform has a
much severer problem. Even though devices are using long-

8

10

TABLE I: Measurement results of devices with cloud IoT servers.

No. Device
Type Device Model App

Install
Long-live
Session

Keep-alive Messages Event Messages Command Messages
Period(s) Pa�ern Timeout(s) Timeout(s) Range(s) Timeout(s) Range(s)

L1 Smart
Light

Wyze White A19 1M+ Yes 62 �xed 60 60 [60, 60] 60 [60, 60]
L2 Philips Hue white A19 1M+ Yes 120 �xed 60 1 [60, 180] 21 [21, 21]
P1

Smart
Plug

Wyze Plug 1M+ Yes 62 �xed 60 60 [60, 60] 60 [60, 60]
P2 Amazon Plug 50M+ Yes 30 �xed 30 30 [30, 30] 30 [30, 30]
P3 Smart�ings WiFi Plug 100M+ Yes 110 on-idle 110 1 [110, 220] 1 [110, 220]
P4 Smart�ings Zigbee Plug 100M+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]
P5 SmartLife Gosound Plug 5M+ Yes 60 on-idle 32 1 [32, 92] 1 [32, 92]
P6 KASA HS103P2 Plug 1M+ Yes 150 �xed 15 55 [15, 55] 15 [15, 15]
P7 Cync 100K+ Yes 21 on-idle 84 1 [84, 105] 1 [84, 105]
P8 iHome iSP6X Plug 100K+ Yes 30 �xed 18 32 [18, 32] 32 [18, 32]
P9 Aqara Plug 50K+ Yes 150 �xed 30 60 [30, 60] 30 [30, 30]
P10 Wemo Mini Plug 1M+ No - - - 52 [52, 52] 15 [15, 15]
P11 Geeni Plug 1M+ No - - - 90 [90, 90] 25 [25, 25]
M1

Motion
Sensor

Smart�ings Motion 100M+ Yes 31 on-idle 16 1 [16, 47] - -
M2 Philips Hue Motion 1M+ Yes 120 �xed 60 1 [60, 180] - -
M3 Wyze Motion 1M+ Yes 62 �xed 60 60 [60, 60] - -
M4 Ring Motion 5M+ Yes 30 �xed 35 1 [35, 65] - -
M5 Nest Motion 5M+ Yes 120 on-idle 60 1 [60, 180] - -
M6 Ecobee Smart Sensor 500K+ Yes 60 on-idle 30 1 [30, 90] - -
M7 SmartLife Sonew Motion 5M+ No - - - 260 [260, 260] - -
M8 iHome iSB01 Motion 100K+ No - - - 70 [70, 70] - -
M9 Aqara Motion 50K+ Yes 150 �xed 30 60 [30, 60] - -
M10 Govee Motion 50K+ Yes 90 �xed 35 55 [35, 55] - -
M11 Amazon Echo Flex 50M+ Yes 30 on-idle 30 60 [30, 60] - -
C1

Contact
Sensor

Smart�ings multipurpose 100M+ Yes 31 on-idle 16 1 [16, 47] - -
C2 Wyze Contact 1M+ Yes 62 �xed 60 60 [60, 60] - -
C3 Nest Contact 5M+ Yes 120 on-idle 60 1 [60, 180] - -
C4 Ecobee Smartsensor 50K+ Yes 60 on-idle 30 1 [30, 90] - -
C5 SmartLife Towode Contact 5M+ No - - - 130 [130, 130] - -
C6 iHome iSB04 Contact 100K+ No - - - 70 [70, 70] - -
C7 Aqara Contact 50K+ Yes 150 �xed 30 60 [30, 60] - -
C8 Ring Contact 5M+ Yes 30 �xed 35 1 [35, 65] - -
C9 Geeni Door & Window 1M+ No - - - 90 [90, 90] - -
C10 Govee door 500K+ Yes 90 �xed 35 55 [35, 55] - -
HS1 Home

Security

Ring Keypad 5M+ Yes 30 �xed 35 1 [35, 65] - -
HS2 Nest Keypad 5M+ Yes 120 on-idle 60 1 [60, 180] - -
HS3 SimpliSafe Keypad 5M+ Yes 55 �xed 30 20 [20, 20] - -
S1

Smart
Switch

Smart�ings bu�on 100M+ Yes 31 on-idle 16 1 [16, 47] - -
S2 Philips Hue Dimmer 1M+ Yes 120 �xed 60 1 [60, 180] - -
S3 �irdReality Switch 1K+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]
S4 Aqara Bu�on 50K+ Yes 150 �xed 30 60 [30, 60] - -
CM1

Smart
Camera

Arlo Q 1M+ No - - - 60 [60, 60] - -
CM2 Wyze Cam Indoor 1M+ Yes 62 �xed 60 60 [60, 60] - -
CM3 Ring Doorbell 5M+ Yes 55 �xed 25 31 [29, 31] - -
CM4 Foscam R2C 1M+ Yes 150 �xed 45 30 [30, 30] - -
CM5 YiHome Cam Indoor 1M+ Yes 45 on-idle 30 1 [30, 74] - -
LC1 Smart

Lock
August Pro Gen2 500K+ Yes 70 on-idle 30 58 [30, 58] 58 [30, 58]

LC2 Kwikset Smartcode 913 50K+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]

cloud) and 42 bytes (cloud to hub) in every 31 seconds.
When an event or command message happens, the next keep-
alive messages will always occur 31 seconds later. When we
a�empt to delay keep-alive messages, we observe a constant
timeout threshold of 16 seconds. A�er that, we trigger and
delay event and command messages right a�er keep-alive
messages and �nd the session timeout still happens 16
seconds a�er the next keep-alive message. �is implies that
the Smart�ings session timeout is solely triggered by keep-
alive messages. We con�rm that by randomly triggering and
delaying event and command messages and con�rmed that
timeouts always happen 16 seconds a�er the starting of delay
of a keep-alive message. For Philips Hue Light bulb (L2) and
dimmer switch (S2) that are using the Philips Hue bridge,
we observe a �xed keep-alive period of 120-second period,
which is independent from the event and command messages.
During the 20-trial experiment, delay of command messages
consistently causes session timeout a�er 21 seconds. While,
in trials of event message delays, timeout always happens
60 seconds a�er a keep-alive message, which means there is

no dedicated timeout for event messages. In summary, event
messages of Philip Hue devices can be delayed in the range of
[60s, 180s], which depends on the interval between the event
message and the next keep-alive message and their command
messages can be consistently delayed for 21 seconds.
To verify the collected parameters in Table I, we also

conduct a veri�cation test. For each testing device, we ran-
domly trigger and delay its messages and predict the timeout
occurrence according to the collected parameters. We end the
delay and release the holding messages 2 seconds before the
predicted timeout. �e results show that not only the timeout
is 100% avoided, but also the delayed messages are accepted
by the device or cloud server.
2) Results of Local-based IoT Devices: For measuring de-

vices’ delays with local IoT servers, we choose Apple’s Home-
Kit as the representative IoT server and connect compatible
devices, as listed in Table II, to a HomePod speaker using the
Home+ mobile application [13] from Apple’s App Store. �e
measurement results show that the HomeKit platform has a
much severer problem. Even though devices are using long-

8

10

[60, 180]

TABLE I: Measurement results of devices with cloud IoT servers.

No. Device
Type Device Model App

Install
Long-live
Session

Keep-alive Messages Event Messages Command Messages
Period(s) Pa�ern Timeout(s) Timeout(s) Range(s) Timeout(s) Range(s)

L1 Smart
Light

Wyze White A19 1M+ Yes 62 �xed 60 60 [60, 60] 60 [60, 60]
L2 Philips Hue white A19 1M+ Yes 120 �xed 60 1 [60, 180] 21 [21, 21]
P1

Smart
Plug

Wyze Plug 1M+ Yes 62 �xed 60 60 [60, 60] 60 [60, 60]
P2 Amazon Plug 50M+ Yes 30 �xed 30 30 [30, 30] 30 [30, 30]
P3 Smart�ings WiFi Plug 100M+ Yes 110 on-idle 110 1 [110, 220] 1 [110, 220]
P4 Smart�ings Zigbee Plug 100M+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]
P5 SmartLife Gosound Plug 5M+ Yes 60 on-idle 32 1 [32, 92] 1 [32, 92]
P6 KASA HS103P2 Plug 1M+ Yes 150 �xed 15 55 [15, 55] 15 [15, 15]
P7 Cync 100K+ Yes 21 on-idle 84 1 [84, 105] 1 [84, 105]
P8 iHome iSP6X Plug 100K+ Yes 30 �xed 18 32 [18, 32] 32 [18, 32]
P9 Aqara Plug 50K+ Yes 150 �xed 30 60 [30, 60] 30 [30, 30]
P10 Wemo Mini Plug 1M+ No - - - 52 [52, 52] 15 [15, 15]
P11 Geeni Plug 1M+ No - - - 90 [90, 90] 25 [25, 25]
M1

Motion
Sensor

Smart�ings Motion 100M+ Yes 31 on-idle 16 1 [16, 47] - -
M2 Philips Hue Motion 1M+ Yes 120 �xed 60 1 [60, 180] - -
M3 Wyze Motion 1M+ Yes 62 �xed 60 60 [60, 60] - -
M4 Ring Motion 5M+ Yes 30 �xed 35 1 [35, 65] - -
M5 Nest Motion 5M+ Yes 120 on-idle 60 1 [60, 180] - -
M6 Ecobee Smart Sensor 500K+ Yes 60 on-idle 30 1 [30, 90] - -
M7 SmartLife Sonew Motion 5M+ No - - - 260 [260, 260] - -
M8 iHome iSB01 Motion 100K+ No - - - 70 [70, 70] - -
M9 Aqara Motion 50K+ Yes 150 �xed 30 60 [30, 60] - -
M10 Govee Motion 50K+ Yes 90 �xed 35 55 [35, 55] - -
M11 Amazon Echo Flex 50M+ Yes 30 on-idle 30 60 [30, 60] - -
C1

Contact
Sensor

Smart�ings multipurpose 100M+ Yes 31 on-idle 16 1 [16, 47] - -
C2 Wyze Contact 1M+ Yes 62 �xed 60 60 [60, 60] - -
C3 Nest Contact 5M+ Yes 120 on-idle 60 1 [60, 180] - -
C4 Ecobee Smartsensor 50K+ Yes 60 on-idle 30 1 [30, 90] - -
C5 SmartLife Towode Contact 5M+ No - - - 130 [130, 130] - -
C6 iHome iSB04 Contact 100K+ No - - - 70 [70, 70] - -
C7 Aqara Contact 50K+ Yes 150 �xed 30 60 [30, 60] - -
C8 Ring Contact 5M+ Yes 30 �xed 35 1 [35, 65] - -
C9 Geeni Door & Window 1M+ No - - - 90 [90, 90] - -
C10 Govee door 500K+ Yes 90 �xed 35 55 [35, 55] - -
HS1 Home

Security

Ring Keypad 5M+ Yes 30 �xed 35 1 [35, 65] - -
HS2 Nest Keypad 5M+ Yes 120 on-idle 60 1 [60, 180] - -
HS3 SimpliSafe Keypad 5M+ Yes 55 �xed 30 20 [20, 20] - -
S1

Smart
Switch

Smart�ings bu�on 100M+ Yes 31 on-idle 16 1 [16, 47] - -
S2 Philips Hue Dimmer 1M+ Yes 120 �xed 60 1 [60, 180] - -
S3 �irdReality Switch 1K+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]
S4 Aqara Bu�on 50K+ Yes 150 �xed 30 60 [30, 60] - -
CM1

Smart
Camera

Arlo Q 1M+ No - - - 60 [60, 60] - -
CM2 Wyze Cam Indoor 1M+ Yes 62 �xed 60 60 [60, 60] - -
CM3 Ring Doorbell 5M+ Yes 55 �xed 25 31 [29, 31] - -
CM4 Foscam R2C 1M+ Yes 150 �xed 45 30 [30, 30] - -
CM5 YiHome Cam Indoor 1M+ Yes 45 on-idle 30 1 [30, 74] - -
LC1 Smart

Lock
August Pro Gen2 500K+ Yes 70 on-idle 30 58 [30, 58] 58 [30, 58]

LC2 Kwikset Smartcode 913 50K+ Yes 31 on-idle 16 1 [16, 47] 1 [16, 47]

cloud) and 42 bytes (cloud to hub) in every 31 seconds.
When an event or command message happens, the next keep-
alive messages will always occur 31 seconds later. When we
a�empt to delay keep-alive messages, we observe a constant
timeout threshold of 16 seconds. A�er that, we trigger and
delay event and command messages right a�er keep-alive
messages and �nd the session timeout still happens 16
seconds a�er the next keep-alive message. �is implies that
the Smart�ings session timeout is solely triggered by keep-
alive messages. We con�rm that by randomly triggering and
delaying event and command messages and con�rmed that
timeouts always happen 16 seconds a�er the starting of delay
of a keep-alive message. For Philips Hue Light bulb (L2) and
dimmer switch (S2) that are using the Philips Hue bridge,
we observe a �xed keep-alive period of 120-second period,
which is independent from the event and command messages.
During the 20-trial experiment, delay of command messages
consistently causes session timeout a�er 21 seconds. While,
in trials of event message delays, timeout always happens
60 seconds a�er a keep-alive message, which means there is

no dedicated timeout for event messages. In summary, event
messages of Philip Hue devices can be delayed in the range of
[60s, 180s], which depends on the interval between the event
message and the next keep-alive message and their command
messages can be consistently delayed for 21 seconds.
To verify the collected parameters in Table I, we also

conduct a veri�cation test. For each testing device, we ran-
domly trigger and delay its messages and predict the timeout
occurrence according to the collected parameters. We end the
delay and release the holding messages 2 seconds before the
predicted timeout. �e results show that not only the timeout
is 100% avoided, but also the delayed messages are accepted
by the device or cloud server.
2) Results of Local-based IoT Devices: For measuring de-

vices’ delays with local IoT servers, we choose Apple’s Home-
Kit as the representative IoT server and connect compatible
devices, as listed in Table II, to a HomePod speaker using the
Home+ mobile application [13] from Apple’s App Store. �e
measurement results show that the HomeKit platform has a
much severer problem. Even though devices are using long-

8

10

[60, 180]

[110, 220]

Phantom-Delay Attack Primitives
• IoT Event Message Delay (E-Delay)

• IoT Command Message Delay (C-Delay)

11

IoT events and commands can be delayed without

 (1) relying on any implementation bugs: usable

 (2) cracking any TLS session keys: easy-to-apply

 (3) triggering any alerts in any layers: stealthy

• What are the new attack primitives?

• E-Delay; C-Delay

• What simple attacks can be launched?

• What sophisticated attacks can be launched?

• What are the possible countermeasures?
12

IoT Phantom Delay Attacks

• State-Update Delay Attacks

13

• Action Delay Attacks

(a) State-Update
Delay Attack

(b) Action Delay Attack (c) Spurious Execution

Water
Detected

Trigger: waterleak sensor detects water
Action: close the main water valve

Delay

Valve
Closed

Water
Detected

Trigger: storm door is opened
Condition: presence is on
Action: unlock the front door

Delay

Presence
Off

Storm Door
Opened (by
attacker)

Presence
Off

Front Door
Unlocked

Valve
Closed

Delay
t

Smoke
Raised

Smoke
Detected

Smoke
Detected

Smoke
Raised

Trigger: front door is closed
Condition: the lock is unlocked
Action: lock the front door

Delay
t

t

Door
Opened

Door
Unlocked

Door
Closed

Door
Locked

Door
Unlocked

Door
Locked

Without
Attack

With
Attack

(d) Disabled Execution

Without
Attack
With

Attack

Without
Attack

With
Attack

Without
Attack

With
Attack

Storm Door
Cosed

Storm Door
Closed Door

Opened
Door

Closed

t

t

t

t

t

Fig. 3: Example a�acks. Two time axes show the sequence of events in the situations, “without a�ack” and “with a�ack”.

�is a�ack can be achieved by either delaying the trigger
event Et until f(c) is no longer true, i.e., I(Et) < I(Êc) and
S(Et) > S(Êc), or delaying the event Ec, which turns f(c)
as true, to be later than the trigger event (i.e., I(Et) > I(Ec)
and S(Et) < S(Ec)).

VI. E���������
In this section, we evaluate our a�ack primitives on 50 o�-

the-shelf commercial IoT devices. For each device, we analyze
its timeout behavior and conduct 20-trial experiments to �nd
the range of delay on commands and events. We demonstrate
all three types of a�acks by reproducing them in real-world
testbeds.

A. Testbed Setup
In our experiment, we test 50 popular IoT devices of 8 types

as listed in Table I and Table II. �e popularity of each device
is indicated by the number of downloads of its mobile app in
the Google Play store. All devices are connected to a home
Verizon G3100 WiFi 6 router. Low energy devices that do not
have WiFi communication capabilities are connected to the
router via their compatible hub/bridge devices. A Raspberry
Pi 3B is used to simulate an a�acker who is in the same local
network as the IoT devices.

B. Device Behavior Measurement
First we measure all 50 devices to pro�le their message

characteristics and timeout behaviors. For each device, we
use the ARP spoo�ng to redirect its tra�c to the Raspberry
Pi, which works as the TCP hijacker shown in Figure 2.
To identify the characteristics of packets that carry the

target event or command messages, we �rst use the server’s
domain name (for cloud IoT servers) or IP address (for Local
IoT servers) to localize the target TCP connection. �en, we
trigger events and commands and check the network packets
that are received by the raspberry pi. If packets of a certain
length can always be found right a�er the triggering of
events or commands, we record it as the length of the target
message. �en, we con�rm this by repeating the procedure
while delaying packets of the same length on the target
connection for several seconds. �e packet characteristics
identi�cation is correct if the anticipated status updates or
actions are also delayed by the same amount of time. A�er
that, to verify that the delayed messages are accepted by

IoT servers or devices, we use the delayed event to trigger
automation rules that have visible actions on other devices
(e.g., turning on a light).
For each device, we �rst set the raspberry pi to the pass-

through mode that allows any packet to pass without delay
while keeping the device idle to observe the its keep-alive
period. �en, we conduct a 20-trails experiment for delaying
each of the keep-alive, event, and command messages. We
have a two-minute interval between every two trials so
that the connection of the testing device can resume. We
log all TCP segments that �ow through our raspberry pi,
and analyze them to get the delay behavior parameters by
following the procedure as described in Section IV-C.

C. Device Timeout Measurement Results

1) Results of Cloud-based IoT Devices: We �rst evaluate
delays on connections between IoT devices and cloud IoT
servers. As shown in Table I, we present their parameters of
timeout behavior, which include period and pa�ern of keep-
alive messages, and timeout thresholds for all types of mes-
sages. A cell marked as ‘1’ means we only observe timeouts
caused by keep-alive messages among all experiment trials.
�is indicates that the device does not have timeout for event
and command messages, and its timeout is solely triggered
by keep-alive messages.
From Table I, we can see event messages of all tested

devices can be delayed for longer than 30 seconds except the
SimpliSafe keypad (HS3), which is enough to cause severe
consequences if applied on safety-sensitive events such as
smoke alerts. In particular, some WiFi-enabled sensor devices
(e.g., M7 and C5) do not use long-live sessions and show
delay time windows longer than 2 minutes. Due to the lack
of keep-alive messages, a session timeout that is caused by
delaying event messages will not be noticed by the cloud
server because the session is never established. Even a�er the
session resumes, this anomaly is not reported to the cloud
server. Here, we use some example devices to illustrate the
procedure to measure the results in Table I.
For devices that are using the Smart�ings hub, we start

monitoring the hub’s network tra�c with no device a�ached.
From the long-live TLS session between the Smart�ings
hub and the Smart�ings cloud server, we �nd that they
exchange messages with �xed lengths of 40 bytes (hub to

7

(a) State-Update
Delay Attack

(b) Action Delay Attack (c) Spurious Execution

Water
Detected

Trigger: waterleak sensor detects water
Action: close the main water valve

Delay

Valve
Closed

Water
Detected

Trigger: storm door is opened
Condition: presence is on
Action: unlock the front door

Delay

Presence
Off

Storm Door
Opened (by
attacker)

Presence
Off

Front Door
Unlocked

Valve
Closed

Delay
t

Smoke
Raised

Smoke
Detected

Smoke
Detected

Smoke
Raised

Trigger: front door is closed
Condition: the lock is unlocked
Action: lock the front door

Delay
t

t

Door
Opened

Door
Unlocked

Door
Closed

Door
Locked

Door
Unlocked

Door
Locked

Without
Attack

With
Attack

(d) Disabled Execution

Without
Attack
With

Attack

Without
Attack

With
Attack

Without
Attack

With
Attack

Storm Door
Cosed

Storm Door
Closed Door

Opened
Door

Closed

t

t

t

t

t

Fig. 3: Example a�acks. Two time axes show the sequence of events in the situations, “without a�ack” and “with a�ack”.

�is a�ack can be achieved by either delaying the trigger
event Et until f(c) is no longer true, i.e., I(Et) < I(Êc) and
S(Et) > S(Êc), or delaying the event Ec, which turns f(c)
as true, to be later than the trigger event (i.e., I(Et) > I(Ec)
and S(Et) < S(Ec)).

VI. E���������
In this section, we evaluate our a�ack primitives on 50 o�-

the-shelf commercial IoT devices. For each device, we analyze
its timeout behavior and conduct 20-trial experiments to �nd
the range of delay on commands and events. We demonstrate
all three types of a�acks by reproducing them in real-world
testbeds.

A. Testbed Setup
In our experiment, we test 50 popular IoT devices of 8 types

as listed in Table I and Table II. �e popularity of each device
is indicated by the number of downloads of its mobile app in
the Google Play store. All devices are connected to a home
Verizon G3100 WiFi 6 router. Low energy devices that do not
have WiFi communication capabilities are connected to the
router via their compatible hub/bridge devices. A Raspberry
Pi 3B is used to simulate an a�acker who is in the same local
network as the IoT devices.

B. Device Behavior Measurement
First we measure all 50 devices to pro�le their message

characteristics and timeout behaviors. For each device, we
use the ARP spoo�ng to redirect its tra�c to the Raspberry
Pi, which works as the TCP hijacker shown in Figure 2.
To identify the characteristics of packets that carry the

target event or command messages, we �rst use the server’s
domain name (for cloud IoT servers) or IP address (for Local
IoT servers) to localize the target TCP connection. �en, we
trigger events and commands and check the network packets
that are received by the raspberry pi. If packets of a certain
length can always be found right a�er the triggering of
events or commands, we record it as the length of the target
message. �en, we con�rm this by repeating the procedure
while delaying packets of the same length on the target
connection for several seconds. �e packet characteristics
identi�cation is correct if the anticipated status updates or
actions are also delayed by the same amount of time. A�er
that, to verify that the delayed messages are accepted by

IoT servers or devices, we use the delayed event to trigger
automation rules that have visible actions on other devices
(e.g., turning on a light).
For each device, we �rst set the raspberry pi to the pass-

through mode that allows any packet to pass without delay
while keeping the device idle to observe the its keep-alive
period. �en, we conduct a 20-trails experiment for delaying
each of the keep-alive, event, and command messages. We
have a two-minute interval between every two trials so
that the connection of the testing device can resume. We
log all TCP segments that �ow through our raspberry pi,
and analyze them to get the delay behavior parameters by
following the procedure as described in Section IV-C.

C. Device Timeout Measurement Results

1) Results of Cloud-based IoT Devices: We �rst evaluate
delays on connections between IoT devices and cloud IoT
servers. As shown in Table I, we present their parameters of
timeout behavior, which include period and pa�ern of keep-
alive messages, and timeout thresholds for all types of mes-
sages. A cell marked as ‘1’ means we only observe timeouts
caused by keep-alive messages among all experiment trials.
�is indicates that the device does not have timeout for event
and command messages, and its timeout is solely triggered
by keep-alive messages.
From Table I, we can see event messages of all tested

devices can be delayed for longer than 30 seconds except the
SimpliSafe keypad (HS3), which is enough to cause severe
consequences if applied on safety-sensitive events such as
smoke alerts. In particular, some WiFi-enabled sensor devices
(e.g., M7 and C5) do not use long-live sessions and show
delay time windows longer than 2 minutes. Due to the lack
of keep-alive messages, a session timeout that is caused by
delaying event messages will not be noticed by the cloud
server because the session is never established. Even a�er the
session resumes, this anomaly is not reported to the cloud
server. Here, we use some example devices to illustrate the
procedure to measure the results in Table I.
For devices that are using the Smart�ings hub, we start

monitoring the hub’s network tra�c with no device a�ached.
From the long-live TLS session between the Smart�ings
hub and the Smart�ings cloud server, we �nd that they
exchange messages with �xed lengths of 40 bytes (hub to

7

• What are the new attack primitives?

• E-Delay; C-Delay

• What simple attacks can be launched?

• “Fire alarm is delayed”, “Remedy actions delayed”

• What sophisticated attacks can be launched?

• What are the possible countermeasures?
14

IoT Phantom Delay Attacks

Key Insight 2:

Each device has an individual TCP-TLS

session to its IoT server

Selective Delay ! Message Out-of-

order

Event 1:

Door unlocked

Event 2:

Door closed

Event 2’:

Door closed

Event 1’:

Door unlocked

Delay

• Spurious Execution

16

• Disabled Execution

(a) State-Update
Delay Attack

(b) Action Delay Attack (c) Spurious Execution

Water
Detected

Trigger: waterleak sensor detects water
Action: close the main water valve

Delay

Valve
Closed

Water
Detected

Trigger: storm door is opened
Condition: presence is on
Action: unlock the front door

Delay

Presence
Off

Storm Door
Opened (by
attacker)

Presence
Off

Front Door
Unlocked

Valve
Closed

Delay
t

Smoke
Raised

Smoke
Detected

Smoke
Detected

Smoke
Raised

Trigger: front door is closed
Condition: the lock is unlocked
Action: lock the front door

Delay
t

t

Door
Opened

Door
Unlocked

Door
Closed

Door
Locked

Door
Unlocked

Door
Locked

Without
Attack

With
Attack

(d) Disabled Execution

Without
Attack
With

Attack

Without
Attack

With
Attack

Without
Attack

With
Attack

Storm Door
Cosed

Storm Door
Closed Door

Opened
Door

Closed

t

t

t

t

t

Fig. 3: Example a�acks. Two time axes show the sequence of events in the situations, “without a�ack” and “with a�ack”.

�is a�ack can be achieved by either delaying the trigger
event Et until f(c) is no longer true, i.e., I(Et) < I(Êc) and
S(Et) > S(Êc), or delaying the event Ec, which turns f(c)
as true, to be later than the trigger event (i.e., I(Et) > I(Ec)
and S(Et) < S(Ec)).

VI. E���������
In this section, we evaluate our a�ack primitives on 50 o�-

the-shelf commercial IoT devices. For each device, we analyze
its timeout behavior and conduct 20-trial experiments to �nd
the range of delay on commands and events. We demonstrate
all three types of a�acks by reproducing them in real-world
testbeds.

A. Testbed Setup
In our experiment, we test 50 popular IoT devices of 8 types

as listed in Table I and Table II. �e popularity of each device
is indicated by the number of downloads of its mobile app in
the Google Play store. All devices are connected to a home
Verizon G3100 WiFi 6 router. Low energy devices that do not
have WiFi communication capabilities are connected to the
router via their compatible hub/bridge devices. A Raspberry
Pi 3B is used to simulate an a�acker who is in the same local
network as the IoT devices.

B. Device Behavior Measurement
First we measure all 50 devices to pro�le their message

characteristics and timeout behaviors. For each device, we
use the ARP spoo�ng to redirect its tra�c to the Raspberry
Pi, which works as the TCP hijacker shown in Figure 2.
To identify the characteristics of packets that carry the

target event or command messages, we �rst use the server’s
domain name (for cloud IoT servers) or IP address (for Local
IoT servers) to localize the target TCP connection. �en, we
trigger events and commands and check the network packets
that are received by the raspberry pi. If packets of a certain
length can always be found right a�er the triggering of
events or commands, we record it as the length of the target
message. �en, we con�rm this by repeating the procedure
while delaying packets of the same length on the target
connection for several seconds. �e packet characteristics
identi�cation is correct if the anticipated status updates or
actions are also delayed by the same amount of time. A�er
that, to verify that the delayed messages are accepted by

IoT servers or devices, we use the delayed event to trigger
automation rules that have visible actions on other devices
(e.g., turning on a light).
For each device, we �rst set the raspberry pi to the pass-

through mode that allows any packet to pass without delay
while keeping the device idle to observe the its keep-alive
period. �en, we conduct a 20-trails experiment for delaying
each of the keep-alive, event, and command messages. We
have a two-minute interval between every two trials so
that the connection of the testing device can resume. We
log all TCP segments that �ow through our raspberry pi,
and analyze them to get the delay behavior parameters by
following the procedure as described in Section IV-C.

C. Device Timeout Measurement Results

1) Results of Cloud-based IoT Devices: We �rst evaluate
delays on connections between IoT devices and cloud IoT
servers. As shown in Table I, we present their parameters of
timeout behavior, which include period and pa�ern of keep-
alive messages, and timeout thresholds for all types of mes-
sages. A cell marked as ‘1’ means we only observe timeouts
caused by keep-alive messages among all experiment trials.
�is indicates that the device does not have timeout for event
and command messages, and its timeout is solely triggered
by keep-alive messages.
From Table I, we can see event messages of all tested

devices can be delayed for longer than 30 seconds except the
SimpliSafe keypad (HS3), which is enough to cause severe
consequences if applied on safety-sensitive events such as
smoke alerts. In particular, some WiFi-enabled sensor devices
(e.g., M7 and C5) do not use long-live sessions and show
delay time windows longer than 2 minutes. Due to the lack
of keep-alive messages, a session timeout that is caused by
delaying event messages will not be noticed by the cloud
server because the session is never established. Even a�er the
session resumes, this anomaly is not reported to the cloud
server. Here, we use some example devices to illustrate the
procedure to measure the results in Table I.
For devices that are using the Smart�ings hub, we start

monitoring the hub’s network tra�c with no device a�ached.
From the long-live TLS session between the Smart�ings
hub and the Smart�ings cloud server, we �nd that they
exchange messages with �xed lengths of 40 bytes (hub to

7

• What are the new attack primitives?

• E-Delay; C-Delay

• What simple attacks can be launched?

• “Fire alarm is delayed”, “Remedy actions delayed”

• What sophisticated attacks can be launched?

• “Spurious unlock”, “Door lock override”

• What are the possible countermeasures?

17

IoT Phantom Delay Attacks

Possible Countermeasures
• Checking timestamp upon receiving a message

• Limitations: post-attack detection; clock sync

• Tightening the app-layer delay constraint

• Limitations: traffic and energy consumption; false positives

18

TCP TCP

Attacker

SSL/TLS

Outbound Queue

Inbound QueueIoT Device

MQTT/HTTP/... ...Application Layer
Transport Layer

Security

Transport Layer

IoT Server

Application Layer
Transport Layer

Security

Transport Layer

Fig. 2: Delaying IoT messages via a TCP hijacker.

ACKs. Hence, we focus on the timeout behavior at the
application layer. We �rst classify IoT messages into two
major types: (i) normal IoT event/command messages, and
(ii) keep-alive (also known as heartbeat) messages that are
used to check the connection quality and IoT device or
server’s liveness. We can describe an IoT device’s timeout
behaviors using three parameters:

• Timeout threshold of keep-alive messages. �is
parameter is only applicable to devices that use long-
live session because the purpose of keep-alive messages
is to detect and terminate non-responsive sessions.

• Pattern of keep-alive messages. �is parameter de-
scribes what condition will keep-alive messages be ex-
changed. Keep-alive messages are exchanged either in
a �xed period or non-periodically when the session
stays idle longer than a interval. �e keep-alive message
pa�ern comprises the period and strategy (�xed or on-
idle) of keep-alive messages.

• Timeout threshold of normal IoT messages. �is
parameter is only applicable to a portion of devices, as
some devices do not implement timeout for event and
command messages. For example, MQTT protocol does
not require timeout for normal messages.

With the three parameters, an a�acker can accurately
predict the happening of the incoming timeout of an IoT
device, and he can �ne-tune the delay imposed on the IoT
messages without causing timeouts.

C. A�ack Primitives
With the analysis of IoT network protocols, we obtain

two major insights: (1) We �nd that the timeout detection
provided by insecure layers (such as TCP) can be fooled.
(2) By observing the target device’s history tra�c, a�ackers
can derive the parameters to model the session timeout
behaviors. Based on the parameters, a�ackers can accurately
predict when timeout is to occur and achieve maximum delay
without causing device timeout. Following these insights,
we build two a�ack primitives, ��D���� and ��D����, for
delaying event and command messages, respectively.
TCP timeouts can be avoided with forged TCP ACKs. As

shown in Figure 2, for each device-to-server TCP connection,
via a TCP hijacker, a�ackers can split the connection between
the IoT device and the corresponding cloud server into two
separate TCP connections, with the TCP hijacker in the
middle. For each side’s connection, the a�acker can hold the
received packets, to incur a delay, before forwarding them to
the destination but acknowledge the receiving immediately.
If the delay is long and triggers the TCP’s keep-alive timeout,

the probing segments can be acknowledged using a forged
ACK to avoid connection termination. At the end of the delay,
all held packets are released so that the TLS MAC veri�cation
is not violated. �is way, transport layer protocols no longer
have any restrictions on the delay time.
Because of the encryption provided by TLS, we cannot

bypass the timeout checking of application layer protocols by
forging devices’ or server’s responses. Instead, we hold target
event messages until the moment right before an application
layer protocol timeout occurs. During the period of the delay,
any following messages are also delayed accordingly to avoid
breaking the sequence number checking of TLS.
We present the concrete steps to pro�le the parameters of a

device’s timeout behavior. A�ackers can perform these steps
on his own devices to collect parameters, and then apply
them to delay other devices of the same model.
1) By monitoring the device’s tra�c on idle state, devices

can be distinguished using on-demand sessions by their
intermi�ent TCP/TLS sessions. For devices that are
using long-live sessions, the packet length and period
of keep-alive messages can be observed.

2) By triggering normal messages of keep-alive devices, a
keep-alive pa�ern can be detected and con�rmed. If the
next keep-alive message is postponed accordingly, the
device has non-periodically keep-alive messages that
are exchanged when the session is idle. Otherwise, the
keep-alive messages are exchanged in a �xed period.

3) Timeout threshold of keep-alive messages can be mea-
sured by delaying a keep-alive message in idle state
until the timeout happens. �e interval between the
beginning of the delay and the occurring of timeout is
recorded as timeout period of keep-alive messages.

4) �e timeout threshold of normal (i.e., event and com-
mand) messages is measured using the same method
as that for keep-alive messages. �e message is in-
tentionally triggered right a�er a successful exchange
of a keep-alive message and delay it until timeout
happens. If the timeout occurs earlier than the antic-
ipated timeout of the next keep-alive message (which
is also delayed accordingly), this interval is recorded as
the timeout of the corresponding message. Otherwise,
it means the device does not implement a timeout
for normal message and the session timeout is solely
triggered by keep-alive messages.

Finally, the collected parameters can be veri�ed by ran-
domly delaying a message and predicting/observing the time-
out behaviors. �e parameters are considered to be correct
if the predicted timeout matches the real-world timeout.

In summary, the procedure for building the a�ack primi-
tives has the following steps. (1) Before launching the a�acks
at the victim environment, an a�acker selects popular IoT
devices as a�ack targets and pro�le their timeout behaviors.
Note that the pro�ling is one-time e�ort and the collected
knowledge can be shared among a�ackers. (2) �e a�acker
sni�s the network tra�c in the victim’s network and uses the
collected knowledge in the previous step to recognize victim

5

Possible Countermeasures
• Checking timestamp upon receiving a message

• Limitations: post-attack detection; clock sync

• Tightening the app-layer delay constraint

• Limitations: traffic and energy consumption; false positives

18

Common Limitation: the countermeasures need
to update the firmware of billions of IoT devices

TCP TCP

Attacker

SSL/TLS

Outbound Queue

Inbound QueueIoT Device

MQTT/HTTP/... ...Application Layer
Transport Layer

Security

Transport Layer

IoT Server

Application Layer
Transport Layer

Security

Transport Layer

Fig. 2: Delaying IoT messages via a TCP hijacker.

ACKs. Hence, we focus on the timeout behavior at the
application layer. We �rst classify IoT messages into two
major types: (i) normal IoT event/command messages, and
(ii) keep-alive (also known as heartbeat) messages that are
used to check the connection quality and IoT device or
server’s liveness. We can describe an IoT device’s timeout
behaviors using three parameters:

• Timeout threshold of keep-alive messages. �is
parameter is only applicable to devices that use long-
live session because the purpose of keep-alive messages
is to detect and terminate non-responsive sessions.

• Pattern of keep-alive messages. �is parameter de-
scribes what condition will keep-alive messages be ex-
changed. Keep-alive messages are exchanged either in
a �xed period or non-periodically when the session
stays idle longer than a interval. �e keep-alive message
pa�ern comprises the period and strategy (�xed or on-
idle) of keep-alive messages.

• Timeout threshold of normal IoT messages. �is
parameter is only applicable to a portion of devices, as
some devices do not implement timeout for event and
command messages. For example, MQTT protocol does
not require timeout for normal messages.

With the three parameters, an a�acker can accurately
predict the happening of the incoming timeout of an IoT
device, and he can �ne-tune the delay imposed on the IoT
messages without causing timeouts.

C. A�ack Primitives
With the analysis of IoT network protocols, we obtain

two major insights: (1) We �nd that the timeout detection
provided by insecure layers (such as TCP) can be fooled.
(2) By observing the target device’s history tra�c, a�ackers
can derive the parameters to model the session timeout
behaviors. Based on the parameters, a�ackers can accurately
predict when timeout is to occur and achieve maximum delay
without causing device timeout. Following these insights,
we build two a�ack primitives, ��D���� and ��D����, for
delaying event and command messages, respectively.
TCP timeouts can be avoided with forged TCP ACKs. As

shown in Figure 2, for each device-to-server TCP connection,
via a TCP hijacker, a�ackers can split the connection between
the IoT device and the corresponding cloud server into two
separate TCP connections, with the TCP hijacker in the
middle. For each side’s connection, the a�acker can hold the
received packets, to incur a delay, before forwarding them to
the destination but acknowledge the receiving immediately.
If the delay is long and triggers the TCP’s keep-alive timeout,

the probing segments can be acknowledged using a forged
ACK to avoid connection termination. At the end of the delay,
all held packets are released so that the TLS MAC veri�cation
is not violated. �is way, transport layer protocols no longer
have any restrictions on the delay time.
Because of the encryption provided by TLS, we cannot

bypass the timeout checking of application layer protocols by
forging devices’ or server’s responses. Instead, we hold target
event messages until the moment right before an application
layer protocol timeout occurs. During the period of the delay,
any following messages are also delayed accordingly to avoid
breaking the sequence number checking of TLS.
We present the concrete steps to pro�le the parameters of a

device’s timeout behavior. A�ackers can perform these steps
on his own devices to collect parameters, and then apply
them to delay other devices of the same model.
1) By monitoring the device’s tra�c on idle state, devices

can be distinguished using on-demand sessions by their
intermi�ent TCP/TLS sessions. For devices that are
using long-live sessions, the packet length and period
of keep-alive messages can be observed.

2) By triggering normal messages of keep-alive devices, a
keep-alive pa�ern can be detected and con�rmed. If the
next keep-alive message is postponed accordingly, the
device has non-periodically keep-alive messages that
are exchanged when the session is idle. Otherwise, the
keep-alive messages are exchanged in a �xed period.

3) Timeout threshold of keep-alive messages can be mea-
sured by delaying a keep-alive message in idle state
until the timeout happens. �e interval between the
beginning of the delay and the occurring of timeout is
recorded as timeout period of keep-alive messages.

4) �e timeout threshold of normal (i.e., event and com-
mand) messages is measured using the same method
as that for keep-alive messages. �e message is in-
tentionally triggered right a�er a successful exchange
of a keep-alive message and delay it until timeout
happens. If the timeout occurs earlier than the antic-
ipated timeout of the next keep-alive message (which
is also delayed accordingly), this interval is recorded as
the timeout of the corresponding message. Otherwise,
it means the device does not implement a timeout
for normal message and the session timeout is solely
triggered by keep-alive messages.

Finally, the collected parameters can be veri�ed by ran-
domly delaying a message and predicting/observing the time-
out behaviors. �e parameters are considered to be correct
if the predicted timeout matches the real-world timeout.

In summary, the procedure for building the a�ack primi-
tives has the following steps. (1) Before launching the a�acks
at the victim environment, an a�acker selects popular IoT
devices as a�ack targets and pro�le their timeout behaviors.
Note that the pro�ling is one-time e�ort and the collected
knowledge can be shared among a�ackers. (2) �e a�acker
sni�s the network tra�c in the victim’s network and uses the
collected knowledge in the previous step to recognize victim

5

Local IoT Server: Not a Countermeasure

19

Cloud-based IoT
server

Victim IoT
device

WiFi router

Local IoT Server: Not a Countermeasure

19

Cloud-based IoT
server

Local IoT
serverVictim IoT

device

WiFi router

Local IoT Server: Not a Countermeasure

19

Cloud-based IoT
server

Local IoT
serverVictim IoT

device

WiFi router

Case Study: Apple Homekit

• Local IoT servers: HomePod, Apple TV, or iPad

• No application layer event ack (HAP specification)

• No keep-alive messages

• Unlimited delay until the hub occasionally polling

Case Study: Apple Homekit

• Local IoT servers: HomePod, Apple TV, or iPad

• No application layer event ack (HAP specification)

• No keep-alive messages

• Unlimited delay until the hub occasionally polling

More than 20 mins
delay!

21

Is TCP+TLS really suitable for IoT?

21

Is TCP+TLS really suitable for IoT?

A Flaw:
We cannot trust the TCP layer to detect
network delays (as it is decoupled from

the data protection by TLS)

21

Is TCP+TLS really suitable for IoT?

A Flaw:
We cannot trust the TCP layer to detect
network delays (as it is decoupled from

the data protection by TLS)

A Dilemma:
We should not use the Application layer to

detect network delays (as its timeout
threshold needs to take into consideration
scheduling, automation processing, and

constrained devices)

22

Not an issue of one or two IoT platforms or devices;

all IoT platforms we tested have it

Attack script and detailed steps to reproduce the attack is
available at

https://github.com/infinitywings/IoT-Phantom-Delay-Attack

Responsible Disclosure

23

“We will report this vulnerability to the product team and reduce the
value of timeout” — SimpliSafe

“We appreciate your suggestions and will evaluate our TLS keep alive
and connection timeout strategy for our current timeout thresholds.
We also have a mitigation strategy in place so in the future it will be
harder for an attacker to discern commands based on packet size or
TCP segment length. ” — Ring

Contributions
• The first work that studies IoT timeout behaviors and

their exploitability

• Revealed a critical design flaw

• IoT phantom-delay attack primitives

• No alerts; no packet loss; no disconnection; no bugs

• Rich attacks: delay, disable, override automation

• Uniqueness (compared to delays in distributed systems)

• Zero implementation bugs vs. specific bugs

• IoT over TCP/IP vs. specialized systems

24

Thanks!

Q&A

