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Malware analysis
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¨ Definition:

Examining an executable program (binary) to 
determine if it is malicious and identifying 
unique attributes of its malicious behavior
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Manual malware analysis
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Manual malware analysis: Tools
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Manual malware analysis
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Machine learning applications
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¨ Malware Triage: Prioritize incoming samples for 
manual analysis

¨ Familial classification: Classify samples into known 
malware families

¨ Functional classification: Classify samples based 
on their primary function (e.g., ransomware, bot, 
trojan, rootkit, etc.) 

¨ Packed/Unpacked: Classify samples as packed or 
unpacked



Machine learning process
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Malware features
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¨ Static: Features obtained from the raw binary file, 
disassembly, or decompiled source code
¤ Byte n-grams
¤ Opcode n-grams
¤ PE header data 

¨ Behavioral: features obtained by running the 
sample
¤ API call sequence
¤ File activity
¤ Network activity



Static features

• Extracted by sliding a 2-byte window along the executable
• Feature vector of each sample: Count of each byte 2-gram
• Total 65,536 byte 2-grams

Byte 2-grams

• Feature vector of each sample: TFIDF of each mnemonic 2-gram
• TFIDF = TF*IDF
• IDF weighs down more commonly occurring features

Mnemonic 2-grams

12



Extracting malware features 
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¨ Static features
¤ Objdump
¤ Sliding window over binary, opcodes

¨ Dynamic
¤ Run sample in Cuckoo sandbox
¤ Process JSON logs from the sandbox



JSON log from Cuckoo sandbox
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Learning models for malware

¨ K-Nearest Neighbor: Samples 
in the training dataset are 
mapped to an n-dimensional 
space. If the majority of the K 
nearest neighbors of an 
incoming samples are 
malicious, the incoming sample 
is labeled malicious.
¤ No model construction needed
¤ Minimal structural assumptions 

about the dataset
¤ Best suited for malware triage
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Learning models for malware

¨ Decision trees: Tree nodes 
consists of features that split 
the samples based on values 
that give most homogeneous 
samples in each subtree. Only 
most discriminatory features 
used for generating the tree. 
¤ Works better with behavioral 

features
¤ Models can be easily 

explained
¤ No need to keep all samples 

after tree is constructed  
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Learning models for malware

¨ Support vector 
machines: produce 
nonlinear boundaries by 
constructing a linear 
boundary in a large, 
transformed version of 
the feature space
¤ Used when classes are 

not linearly separable
¤ High accuracy with 

behavioral features
¤ Most successful before 

deep learning  
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Challenges
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¨ Concept drift: i.i.d (independent and identically 
distributed) assumption of traditional machine learning 
may not hold for malware

¨ High FP: Difficult to keep false positives under a 
threshold. Nobody will use an anti virus if it starts 
flagging non-malicious files as malicious  

¨ Feature engineering: Feature construction still requires 
human expertise and is error prone

¨ Poisoning attacks: machine learning techniques are 
prone to training data poisoning leading to incorrect 
model construction
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Concept drift
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Deep Learning Approach
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¨ No feature engineering: No need to determine the 
right features. Deep neural networks discover 
interesting features.

¨ No concept drift: Deep neural networks continue to 
learn and adapt with new data

¨ Very high accuracy: Usually greater than 99% 
¨ Low False Positives: No more regular files getting 

labeled as malicious 



Why deep learning?
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DL approach
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¨ CNN: Convolutional neural networks
¤ Convolve inputs (weighted map) to a lower dimensional 

feature space to extract more prominent features

¨ RNN: Recurrent neural networks
¤ LSTM: Long short-term memory, a type of RNN
¤ Suitable for sequential inputs

¨ Stacked Autoencoders
¤ Suitable for unsupervised deep learning



Multilayer perceptron
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Deep neural network
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Convolutional neural network
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Recurrent neural networks
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Stacked autoencoders
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Familial classification using DL
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Deep learning architecture 
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DL vs Traditional ML: Results
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Source: Kolosnjaji, B., Zarras, A., Webster, G., & Eckert, C. (2016, December). Deep learning for classification of malware 
system call sequences. In Australasian Joint Conference on Artificial Intelligence (pp. 137-149). Springer.



Signature generation using DL
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Stacked autoencoders in DBN
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