MALWARE ANALYSIS USING
MACHINE LEARNING

Anshuman Singh

Associate Professor
Department of Information Systems and Technology
University of Missouri St Louis

CAE TechTalk, October 17, 2019

Qutline

Manual malware analysis

Traditional machine learning in malware analysis
Applications
Features

Models
Challenges

Deep learning in malware analysis
CNN, RNN, Stacked autoencoders
Familial classification

Signature generation

Malware analysis
Definition:

Examining an executable program (binary) to
determine if it is malicious and identifying
unique attributes of its malicious behavior

Signature-based detection
=m

\\ 4
Extract signature
Sample > Automated Manual and rergrjloval > Verify
Filtering Analysis . .
instructions
Signature
+
R |
ANTI-VIRUS LAB smove
Instructions
HOST COMPUTER femoval
Signature) .
instruction
\\ "4 \\2

Match
Disinfect

\ 4

File ——> Scan

system

Manual malware analysis

Header

analysis

* Section
analysis

* Packed/Unp

acked

m

/

* Disassembly

* Look for
strings, API
calls,
encryption,
etc.

iy

_

* Binary
debugging

* Examine
stack and
registers at
breakpoints

Manual malware analysis: Tools
—

m

iy

* PE explorer * IDA Pro * Ollydbg
* PE view * Ghidra * WinDbg
* Objdump * Radare * Immunity

Manual malware analysis

Practical
Malware
Analysis

The Hands-0n Guide to 0 IR
Dissecting Malicious 4% - |

Software

Michael Sikorski
and Andrew Honig

Foreword by Richard Bejtlich

Signature-based detection
_m

\ 4
Extract signature
Automated Manual - R « .
Sample e . > and removal > Verify
Filtering Analysis X .
instructions
Signature
+
R [
ANTI-VIRUS LAB emova
Instructions
HOST COMPUTER | cemoval
Signature . .
instruction
A4 \ 4

Match
Disinfect

\ 4

File ——> Scan

system

Machine learning applications

Malware Triage: Prioritize incoming samples for
manual analysis

Familial classification: Classify samples into known
malware families

Functional classification: Classify samples based
on their primary function (e.g., ransomware, bot,
trojan, rootkit, etc.)

Packed/Unpacked: Classify samples as packed or
unpacked

Machine learning process
o

Training Future
Data Data

Feature Feature Feature

Extraction Extraction Extraction

) (e (e

Learning Data model Deployed model

Malware features

Static: Features obtained from the raw binary file,
disassembly, or decompiled source code

Byte n-grams

Opcode n-grams
PE header data

Behavioral: features obtained by running the
sample

API call sequence

File activity

Network activity

Static features

* Extracted by sliding a 2-byte window along the executable

* Feature vector of each sample: Count of each byte 2-gram
* Total 65,536 byte 2-grams

* Feature vector of each sample: TFIDF of each mnemonic 2-gram
e TFIDF = TF*IDF

* IDF weighs down more commonly occurring features

1010 0011 0111 MOV AX,20 MOV MOV_ADD
1000 1000 0001 ADD BH,AX ADD ADD_CALL
1001 1010 0101 > CALL FOO | » CALL ’ CALL_INC
...... INC BX,10 INC

Executable Disassembled Mnemonics Mnemonic

executable 2-grams

Extracting malware features

Static features
Objdump

Sliding window over binary, opcodes

root@linux-server etcl#f ob jdump S u

itserid: file format elf32-i386

Disassembly of section .init:

B8B48338 <_ini

88483308 : 5¢

8848331 : eSS zesp,~7ebp

8848333 : 3 ec 88 su $8x8,~zesp

8848336 : > b9 88 88 88 88483f4 <call_gmon_start>

Dynamic
Run sample in Cuckoo sandbox

Process JSON logs from the sandbox

cuckeo*y”

JSON log from Cuckoo sandbox
I

"hosts": ["0.0.0.0", "255.255.255.255",
"10.0.2.2", "10.0.2.15", "239.255.255.250",
"224.0.0.22", "10.0.2.255"], "dns": [],
"tcp": []}, "behavior": {"processes":
[{"parent_id": "428", "process name":
"@alcc307ed378bc79bc524497282c4d9¢c535cc3014d
8e2a9%e72cObaad681b3e9™, "process id": "700",
"first seen™: "20140831184558.308", "calls":
[{"category”: "filesystem", "status™:
"SUCCESS"™, "return": "0x00000024",
"timestamp”: "20140831184558.308",
"repeated”: 0, "api": "CreateFileW",
"arguments”: [{"name": "lpFileName",
"value™: "C:\\WINDOWS\\system32
\\duser.d11"}, {"name": "dwDesiredAccess",
"value™: "GENERIC READ"}]}, {"category":
"filesystem", "status": "SUCCESS", "return":
"", "timestamp”: "20140831184558.308",

Learning models for malware

1 K-Nearest Neighbor: Samples

in the training dataset are
mapped to an n-dimensional
space. If the majority of the K
nearest neighbors of an
incoming samples are
malicious, the incoming sample
is labeled malicious.

No model construction needec

Minimal structural assumptions
about the dataset

Best suited for malware triage

.Kewm

Y-Axis

A~

Initial Data
New example
to classify

X %

Class A
Class B

X-Axis

Calculate Distance

Class A

* * Class B

Y-Axis
) o
b o
*

X-Axis

Finding Neighbors & Voting for Labels

4

Y-Axis
) o
) o

Class A
* Class B

Learning models for malware

16|
-1 Decision trees: Tree nodes

consists of features that split TP

the samples based on values

that give most homogeneous R Bl kb

samples in each subtree. Only e e

most discriminatory features PESI Port: otherthan 443 53

used for generating the tree. o s
Works better with behavioral Class: malware Class: benign
features

Models can be easily
explained

No need to keep all samples
after tree is constructed

.ﬁewm

Learning models for malware

Support vector

machines: produce
nonlinear boundaries by . Cearn
constructing a linear :
boundary in a large, & . 0
transformed version of '
the feature space

0
Used when classes are ® o\ o .
not linearly separable o/ 0

High accuracy with
behavioral features

Most successful before Input Space Feature Space

deep learning

Challenges

Concept drift: i.i.d (independent and identically
distributed) assumption of traditional machine learning
may not hold for malware

High FP: Difficult to keep false positives under a
threshold. Nobody will use an anti virus if it starts
flagging non-malicious files as malicious

Feature engineering: Feature construction still requires
human expertise and is error prone

Poisoning attacks: machine learning techniques are
prone to training data poisoning leading to incorrect
model construction

Causes of change in malware

Natural Environmental Polymorphic
evolution evolution evolution
* Adding * Evolution in the compiler * Encrypted code

functionalities
* Obfuscated code

Using different compiler
* Making bug fixes switches

* Porting to a new Using a different
environment compiler itself

Changes in the libraries
linked to the malware

Concept drift
B

Feature Feature Feature
Extraction Extraction Extraction
) .| Performance R
Learning > . > Deployment
evaluation

Deep Learning Approach

No feature engineering: No need to determine the
right features. Deep neural networks discover
interesting features.

No concept drift: Deep neural networks continue to
learn and adapt with new data

Very high accuracy: Usually greater than 99%

Low False Positives: No more regular files getting
labeled as malicious

Why deep learning?
T

Deep learning

Older learning
algorithms

Performance

Amount of data

DL approach

CNN: Convolutional neural networks

Convolve inputs (weighted map) to a lower dimensional
feature space to extract more prominent features

RNN: Recurrent neural networks
LSTM: Long short-term memory, a type of RNN
Suitable for sequential inputs

Stacked Autoencoders

Suitable for unsupervised deep learning

Multilayer perceptron

| Input layer I ______ Hidden layer — - — = = = Output layer

Deep neural network
o

Input

L1

Hidden Layer-1 Hidden Layer-2 Hidden Laver-3

Convolutional neural network
e

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Recurrent neural networks

—
N

Stacked autoencoders

Familial classification using DL

_29 |
|
PE File
v Malware zoo
Malware | Cuckoo
Collection Sandbox

Y

L2

TensorFlow

Preprocessing

Neural Network

—) T

Family 1 Family 2 Family n

Deep learning architecture

......................................

.....................................

{ ¢ LeretProcedureAddress

[-
B R e .
"y -

LdrLoadDIl

.....................................

.....................................

LdrLoadDll

LdrLoadDIl

Convolution
max
pooling
_____________________ 2X

T

LSTM cell

—
Ty

LSTM cell

|

)

LSTM cell

—

LSTM cell

average

pooling, dropout

A

Softmax

DL vs Traditional ML: Results
T

Family Deep Neural Network Hidden Markov Model Support Vector Machine

ACC PR RC ACC PR RC ACC PR RC
Multiplug 98.9 99.8 99.0 91.5 74.5 91.5 99.3 99.9 99.3
Kazy 100.0 99.9 100.0 73.1 95.1 73.1 96.6 93.1 96.6
Morstar 100.0 99.9 100.0 80.0 63.7 80.0 82.3 91.0 82.3
Zusy 100.0 57.5 100.0 65.4 45.1 65.4 100.0 58.4 100.0
SoftPulse 100.0 99.1 100.0 51.1 100.0 51.1 99.9 99.6 99.9
Somoto 100.0 100.0 100.0 50.0 37.6 50.0 99.8 100.0 99.8
Mikey 0.0 0.0 0.0 5.7 20.0 5.7 0.0 0.0 0.0
Amonetize 99.1 100.0 99.6 29.4 100.0 29.4 99.3 100.0 99.3
Eldorado 99.4 100.0 99.5 20.0 80.4 20.0 100.0 100.0 100.0
Kryptik 96.6 100.0 96.2 10.0 100.0 10.0 97.1 100.0 97.1

Average 89.4 85.6 89.4 47.5 71.6 47.6 87.4 84.2 87.4

Signature generation using DL

: ["0.0.0.0%, "255.255.255.255%,
.0.2.2%, "10.0.2.15%, "239.255.255.2%0",
224.0.0.22%, "10.0.2.255"], “dns": (],
"tep™: []1), “behavior™: {“processes™:
[("parent_id": "428", “process_name":
"0a1cc307ed378bc 79bC524497282c4d9¢535¢c 30144
80229 72¢0baadb81b3e9™, "process_id": "700%,
"first_seen™: "20140831184558.308", “calls”:
Sandbox e

Sandbox Log

< % 112 10110010110100..
DBN

Binary bit-string

2,500
5,000
20,000

Stacked autoencoders in DBN
B

2,500
..... anweighd_____
5,000 1000
- T_rai'n_w_eigh_ts A : rain weigh
20,000 ~ [2500 o [2s00 | !

Train weights ! Freeze weights

sm=m=======-=- == Ll LETT T FTET SRR .l !

5 5,000 T 5,000 ‘ 5,000
: Train weights l#: : | Freeze weights
20,000

e S S ——

20,000

¥ 20,000

N

T —— -

TensorFlow

References

Kolter, J. Z., & Maloof, M. A. (2006). Learning to detect and classify malicious executables in
the wild. Journal of Machine Learning Research, 7(Dec), 2721-2744.

Lakhotia, A., Walenstein, A., Miles, C., & Singh, A. (201 3). Vilo: a rapid learning nearest-
neighbor classifier for malware triage. Journal of Computer Virology and Hacking Techniques,
9(3), 109-123.

Singh, A., Walenstein, A., & Lakhotia, A. (2012, October). Tracking concept drift in malware
families. In Proceedings of the 5th ACM workshop on Security and artificial intelligence (pp. 81-

92). ACM.

Kolosnjaiji, B., Zarras, A., Webster, G., & Eckert, C. (2016, December). Deep learning for
classification of malware system call sequences. In Australasian Joint Conference on Artificial
Intelligence (pp. 137-149). Springer, Cham.

David, O. E., & Netanyahu, N. S. (2015, July). Deepsign: Deep learning for automatic malware
signature generation and classification. In 2015 International Joint Conference on Neural
Networks (IJCNN) (pp. 1-8). IEEE.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An infroduction to statistical learning
(Vol. 112, p. 18). New York: springer.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Questions
s

