MALWARE ANALYSIS USING MACHINE LEARNING

Anshuman Singh

Associate Professor Department of Information Systems and Technology University of Missouri St Louis

CAE TechTalk, October 17, 2019

Outline

- Manual malware analysis
- Traditional machine learning in malware analysis
 - Applications
 - Features
 - Models
 - Challenges
- Deep learning in malware analysis
 - CNN, RNN, Stacked autoencoders
 - Familial classification
 - Signature generation

Malware analysis

Definition:

Examining an executable program (binary) to determine if it is malicious and identifying unique attributes of its malicious behavior

Signature-based detection

Manual malware analysis

Manual malware analysis: Tools

Manual malware analysis

Practical Malware Analysis

The Hands-On Guide to Dissecting Malicious Software

> Michael Sikorski and Andrew Honig Foreword by Richard Bejtlich

Signature-based detection

Machine learning applications

- Malware Triage: Prioritize incoming samples for manual analysis
- Familial classification: Classify samples into known malware families
- Functional classification: Classify samples based on their primary function (e.g., ransomware, bot, trojan, rootkit, etc.)
- Packed/Unpacked: Classify samples as packed or unpacked

Machine learning process

Malware features

- Static: Features obtained from the raw binary file, disassembly, or decompiled source code
 - Byte n-grams
 - Opcode n-grams
 - PE header data
- Behavioral: features obtained by running the sample
 - API call sequence
 - File activity
 - Network activity

Static features

Extracting malware features

Static features

- Objdump
- Sliding window over binary, opcodes

lroot@linux-server etc]# objdump -S userid ¦ more										
serid:	file format elf32-i386									
Disassembly	of section .init:									
38048330 <_	init>:									
8048330:	55	push	×ebp							
8048331:	89 e5	mov	zesp,zebp							
8048333:	83 ec 08	sub	\$0x8,%esp							
8048336:	e8 b9 00 00 00	call	80483f4 <call_gmon_start></call_gmon_start>							

Dynamic

- Run sample in Cuckoo sandbox
- Process JSON logs from the sandbox

JSON log from Cuckoo sandbox

"hosts": ["0.0.0.0", "255.255.255.255", "10.0.2.2", "10.0.2.15", "239.255.255.250", "224.0.0.22", "10.0.2.255"], "dns": [], "tcp": []}, "behavior": {"processes": [{"parent id": "428", "process name": "0a1cc307ed378bc79bc524497282c4d9c535cc3014d 8e2a9e72c0baad681b3e9", "process_id": "700", "first seen": "20140831184558.308", "calls": [{"category": "filesystem", "status": "SUCCESS", "return": "0x00000024", "timestamp": "20140831184558.308", "repeated": 0, "api": "CreateFileW", "arguments": [{"name": "lpFileName", "value": "C:\\WINDOWS\\system32 \\duser.dll"}, {"name": "dwDesiredAccess", "value": "GENERIC READ" }] }, { "category": "filesystem", "status": "SUCCESS", "return": "", "timestamp": "20140831184558.308",

. . .

Learning models for malware

K-Nearest Neighbor: Samples in the training dataset are mapped to an n-dimensional space. If the majority of the K nearest neighbors of an incoming samples are malicious, the incoming sample is labeled malicious.

- No model construction needec
- Minimal structural assumptions about the dataset
- Best suited for malware triage

Learning models for malware

- Decision trees: Tree nodes consists of features that split the samples based on values that give most homogeneous samples in each subtree. Only most discriminatory features used for generating the tree.
 - Works better with behavioral features
 - Models can be easily explained
 - No need to keep all samples after tree is constructed

Learning models for malware

- 17
- Support vector machines: produce nonlinear boundaries by constructing a linear boundary in a large, transformed version of the feature space
 - Used when classes are not linearly separable
 - High accuracy with behavioral features
 - Most successful before deep learning

Input Space

Feature Space

Challenges

- Concept drift: i.i.d (independent and identically distributed) assumption of traditional machine learning may not hold for malware
- High FP: Difficult to keep false positives under a threshold. Nobody will use an anti virus if it starts flagging non-malicious files as malicious
- Feature engineering: Feature construction still requires human expertise and is error prone
- Poisoning attacks: machine learning techniques are prone to training data poisoning leading to incorrect model construction

Causes of change in malware

Natural	Environmental	Polymorphic
evolution	evolution	evolution
 Adding functionalities Making bug fixes Porting to a new environment 	 Evolution in the compiler Using different compiler switches Using a different compiler itself Changes in the libraries linked to the malware 	 Encrypted code Obfuscated code

Concept drift

Deep Learning Approach

- No feature engineering: No need to determine the right features. Deep neural networks discover interesting features.
- No concept drift: Deep neural networks continue to learn and adapt with new data
- Very high accuracy: Usually greater than 99%
- Low False Positives: No more regular files getting labeled as malicious

Why deep learning?

DL approach

- CNN: Convolutional neural networks
 - Convolve inputs (weighted map) to a lower dimensional feature space to extract more prominent features
- RNN: Recurrent neural networks
 - LSTM: Long short-term memory, a type of RNN
 - Suitable for sequential inputs
- Stacked Autoencoders
 - Suitable for unsupervised deep learning

Multilayer perceptron

24

Input layer _ _ _ _ _ Hidden layer _ _ _ _ Output layer

Deep neural network

Convolutional neural network

Recurrent neural networks

Stacked autoencoders

Familial classification using DL

Deep learning architecture

30

DL vs Traditional ML: Results

31

Family	Deep	Neural	Network	Hidden	Markov	Model	Support	Vector	Machine
	ACC	\mathbf{PR}	RC	ACC	\mathbf{PR}	RC	ACC	\mathbf{PR}	RC
Multiplug	98.9	99.8	99.0	91.5	74.5	91.5	99.3	99.9	99.3
Kazy	100.0	99.9	100.0	73.1	95.1	73.1	96.6	93.1	96.6
Morstar	100.0	99.9	100.0	80.0	63.7	80.0	82.3	91.0	82.3
Zusy	100.0	57.5	100.0	65.4	45.1	65.4	100.0	58.4	100.0
SoftPulse	100.0	99.1	100.0	51.1	100.0	51.1	99.9	99.6	99.9
Somoto	100.0	100.0	100.0	50.0	37.6	50.0	99.8	100.0	99.8
Mikey	0.0	0.0	0.0	5.7	20.0	5.7	0.0	0.0	0.0
Amonetize	99.1	100.0	99.6	29.4	100.0	29.4	99.3	100.0	99.3
Eldorado	99.4	100.0	99.5	20.0	80.4	20.0	100.0	100.0	100.0
Kryptik	96.6	100.0	96.2	10.0	100.0	10.0	97.1	100.0	97.1
Average	89.4	85.6	89.4	47.5	71.6	47.6	87.4	84.2	87.4

Source: Kolosnjaji, B., Zarras, A., Webster, G., & Eckert, C. (2016, December). Deep learning for classification of malware system call sequences. In Australasian Joint Conference on Artificial Intelligence (pp. 137-149). Springer.

Signature generation using DL

Stacked autoencoders in DBN

33

References

- Kolter, J. Z., & Maloof, M. A. (2006). Learning to detect and classify malicious executables in the wild. Journal of Machine Learning Research, 7(Dec), 2721-2744.
- Lakhotia, A., Walenstein, A., Miles, C., & Singh, A. (2013). Vilo: a rapid learning nearestneighbor classifier for malware triage. Journal of Computer Virology and Hacking Techniques, 9(3), 109-123.
- Singh, A., Walenstein, A., & Lakhotia, A. (2012, October). Tracking concept drift in malware families. In Proceedings of the 5th ACM workshop on Security and artificial intelligence (pp. 81-92). ACM.
- Kolosnjaji, B., Zarras, A., Webster, G., & Eckert, C. (2016, December). Deep learning for classification of malware system call sequences. In Australasian Joint Conference on Artificial Intelligence (pp. 137-149). Springer, Cham.
- David, O. E., & Netanyahu, N. S. (2015, July). Deepsign: Deep learning for automatic malware signature generation and classification. In 2015 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

