=

Bl

Department of
Computer Science

INCORPORATING Al INTO SOFTWARE REVERSE ENGINEERING
COURSES

Xiuwen Liu and Mike Burmester
Department of Computer Science

Florida State University, Tallahassee, FL

INTRODUCTION - BACKGROUND
= Software becomes the key components in many systems and its complexity has been
iIncreasing to meet context-dependent requirements

— Unfortunately, as a result, there are many new vulnerabilities and new attack
surfaces

— As the least secure component of the digital ecosystem, user errors continue to
contribute to the cyber incidences

= Consequently, reverse engineering of binaries is a fundamental skill
— ltis crucial for analyzing malware
— Furthermore, it has a variety of other applications

= The challenge is that it is difficult to master reverse engineering skills

— Programs are inherently flexible and complex at the binary level and analysts often
spend long hours to figure out

[

el

Department of
Computer Science 2

INTRODUCTION — BACKGROUND — CONT.

= Curricular in typical computer science programs make teaching software engineering
skill more challenging

— To meet the demand of software developers, how to improve software
development productivity becomes the top priority of computer science programs

» By enabling and encouraging code reuse using libraries and higher-level
programming languages

Number of top 39 U.S. computer science departments
that use each language to teach introductory courses

IOII
5
8—

Python Java MATLAB C++ Scheme Scratch

Analysis done by Philip Guo (www.pgbov et) in July 2014, last updated 2014-07-29

Department of
Computer Science 3

=

INTRODUCTION — BACKGROUND — CONT.

= One side effect is that computer science students have little exposure to low-level
concepts and may not appreciate vulnerabilities and their potential impacts

— For example, the students graduated with a computer science degree now may
not know that functions are implemented using calling conventions

* They may know the instruction set architecture concept, but may not have
written any programs in assembly

* We are aware the efforts of requiring the students in CAE to have such
exposure so that the students could be able to code securely

* The challenge is how to educate capable analysts that can analyze new malware
efficiently and effectively

[

el

Department of
Computer Science 4

CURRENT SITUATION

= There are very useful and powerful tools to help analysts analyze malicious and

binary programs and identify vulnerabilities

— Such as Ghidra and IDA Pro
— We found that most students use both IDA Pro and Ghidra jointly

« Signature matching capabilities in IDA Pro enable it to identify many functions

Overview Navigator

Functions Window

||

Graph Overview

B ey Ay B B) o @O Al Fy# @ X > @O O | Nodebugger

Library function |\ Data [l Regular function i Unexplored i Instruction _Extemal symbol
m @ (5] Hex View-1 @A Structures ©[F Enums

[7] Functions window oo o

Function namo

(7] sub_401010

7] sub_401100

7] _printt
__get_printf_count_output
_strstr

_puts
__security_check_cookie(x)
_LocaleUpdate::_LocaleUpdate(localein
(7] _tolower_1

(7] _tolower

(7] fast_error_exit

(7] __tmainCRTStartup

SSSSE

SIS

SR

S

SLN26
7] sub_401730
__initstdio
__endstdio
—lock_file
_lock_file2
_unlock_file
—_unlock file2
__stout
—tiout
(7] _write_char

SIS

SIS

SIS

4 Graph overview 0o o

100.00% (-291,-33) (154,440) 00000400 00401

2-11/net runtize

Function argusent i has been propagated
The initial autoanalysis has been finished:

Python

B @@

O Imports ©(# Exports

Attributes.

Feta
Zaln endo

00: _main (Synchronized with Hex View-1)

Taput CRC32 & TDI734cE

sch/Dasktop/Getprocesses. exe
abie for 80386 (PE)

=
1 e riia has besa 3o Sractive Disassesbisr (%)
; Copresone (@) e rpociotan-fora. o
2 FHhey
H ety
} Toput 305 1 2E9A998047982A0874596BE1ESTACAIL

10001000)
00072cc (29388
+ 00007400 (29698.)

bp-based frase

i int _cdect sain(int arge, const char *rargv, coast char *reavp)
"zain Froc near

[acgc= avora per o
acgve aword prr ocn
eavpe dword prr 108

Disassembly view

==
==

fe o

Code review in Ghidra makes easier to understand the logics in the binaries

L ! - 8 x
Fie St Ansyic Goph Mmigstion Sewch Sekct Took Window Hep

H ¢ = BBFD JIDULFRVYE- oo VESEIBRGL0BO s @

FI RS Qf Fv @6
[pre———— 5
Headers.
@ e
@
B o
8 -

o8 B
5 1 Oncamaoteyogpe ExEsEsESTACH
9B vedows w22

ol foow11se [msterencries Tcas oxoomner

L= |Department of

Computer Science

5

CURRENT SITUATION — CONT.

» Students often create C or C++ programs for functions so that they can test their
ideas and generate running cases
— For dynamic analysis, the debugging capabilities in IDA are very helpful as well

— Even though Ghidra offers emulation capabilities, they are available only via APls
and most students found them cumbersome to use

= Qverall, we have observed that the current tool set allows our students to learn static
and dynamic analyses and use them for malware analyses effectively

— The scripting and programming capabilities are very important as well

[

el

Department of
Computer Science 6

BEYOND MANUAL ANALYSIS

= However, software reverse engineering is still dominantly a manual process

= Given the rapid developments in artificial intelligence and in particular machine
learning, it is highly desirable to be able to incorporate such advanced capabilities
iInto reverse engineering routines

— Some techniques such as symbolic execution have been around for some time
and recent developments make them more applicable

— Machine learning and deep learning are improving natural language processing,
object detection, and speech recognition significantly

* Applying these techniques to software reverse engineering could be fruitful

— Graph neural networks are particularly suitable for representing multiple
relationships in programs

* They could lead to better software reverse engineering tools

[

el

Department of
Computer Science /

SYMBOLIC EXECUTION

= Symbolic execution techniques are very appealing conceptually
— The precision and coverage tradeoff for binary program analysis is well understood

— In order to systematically understand a malware sample, symbolically enumerating
all execution possibilities can be helpful

* However, there is a mismatch between cases analysts expect and cases by
symbolic execution techniques

— For example, a for loop can generate many different branches by unrolling
the loop

— But analysts would like to treat that as a loop unless it is vulnerable
— There are also practical issues when using them to analyze whole binary programs

* For examples, system and library functions cause issues for typical symbolic

execution routines
=

el

Department of
Computer Science

8

REPRESENTATION LEARNING USING MACHINE LEARNING

In recent years, transformer-based natural language processing models such as

BERT have surpassed humans in a number of challenging tasks

Rank

1

Jun 04, 2021
2

Feb 21, 2021
3

May 16, 2021

4
Apr 06, 2020

Model

Human Performance
Stanford University
(Rajpurkar & Jia et al. '18)

IE-Net (ensemble)
RICOH_SRCB_DML

FPNet (ensemble)
Ant Service Intelligence Team

IE-NetV2 (ensemble)
RICOH_SRCB_DML

SA-Net on Albert (ensemble)
QIANXIN

EM

86.831

90.939

90.871

90.860

90.724

F1

89.452

93.214

93.183

93.100

93.011

[

el

-or example, see the Squad leaderboard at https://rajpurkar.github.io/SQuAD-explorer/

t is highly desirable to apply these techniques to binary program analyses

Department of
Computer Science

9

REPRESENTATION LEARNING USING MACHINE LEARNING — CONT.

* Fundamentally, these techniques learn a vector representation for tokens, instructions,
basic blocks, and functions to facilitate downstream tasks

— Recently we have used metric learning to successfully improve the embeddings

— However, it may not be realistic to expect students in software reverse engineering
to know such techniques and be able to apply them effectively

Training Loss Testing Loss
0.4 1 —— average loss 80
0.6 - e max loss / /
—min loss _
0.3 60
v 0.4 4 v
8 g 40 -
0.2 - 027
20 A
0.01_ i . i ; 0.14, i . i i : o
0 5 10 15 20 25 0 5 10 15 20 25
Epochs Epochs -
Training Accuracy Testing Accuracy
100 —40
98 -
> 98 . —60
g i 0
96 -
—— EVerage accuracy T T T T T T T T T
94 - max accuracy —80 —60 —40 =20 0 20 40 60 80
99 - === ITEh RECUracy « MOV « CALL . JMP « CSET + UNARY
0 5 v 15 20 25 0 5 0 15 20 25 e BNOP o CMP * SHIFT cmov il
Epochs Epochs a—

Department of
Computer Science

el

10

BRIDGING SEMANTIC GAPS AUTOMATICALLY

= As analysts and programmers understand programs using meaningful variable and
function names much better, it seems a good idea to utilize the available source
code to learn patterns so that lost semantics in stripped binaries can be recovered

— With the recent techniques of graph neural networks to model multiple syntactic
and semantic relationships between instructions, learned instruction embeddings
and graph representations will likely lead to substantial improvements in
automatically recovering human readable variables and function names

 Recent work has demonstrated that function names can be recovered from
stripped binaries with an F1 score of 0.45

* More interpretable functions could be synthesized based on available input-
output relationships

= However, they are still not readily useful to analysts

[

el

Department of
Computer Science 1

INCORPORATING Al INTO REVERSE ENGINEERING COURSES

= While Al and machine learning techniques have shown promise for a number of
software reverse engineering tasks, how to train and equip analysts to be able to use
such techniques to analyze a new unknown binary sample is a challenge

— |t seems that it is not realistic to incorporate such advanced topics to a software
engineering course

« Even though elements of such topics can be covered

* Encouraging students to explore them in a term project seems a good strategy
after they are introduced

— Developing separate courses that focus on Al and machine learning techniques
for reverse engineering can be an option

 However, it may be necessary to have an advanced machine learning course
as a prerequisite, which, however, will limit the student pool significantly

[

el

Department of
Computer Science

12

SUMMARY

* In the last few years, we have tried to incorporate Al and machine learning
techniques into our software reverse engineering course

— Symbolic execution techniques are useful but they must be used via available
libraries and APIs

— For instruction and other embeddings based on natural language processing
models, the analysts need to learn and be familiar the techniques in order to
incorporate them into their analysis routines

— Graph neural networks offer great potential to learn better and more effective

models by modeling multiple syntactic and semantic relationships among
instructions

* However, learning and using such models is challenging

= \We hope we can explore the issues collectively and figure out an effective way to
take advantage of the recent and exciting development in Al and machine learning

L= |Department of
TS[._][Computer Science

13

