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Autonomous vehicles have been regarded as the ultimate solution to future automotive engineering. Lane detection is a required task for vehicles to navigate autonomously, since the
results directly affect steering decisions. Lane detection methods based on computer vision and image processing can be divided into two categories: the traditional image processing and
semantic segmentation methods.

Traditional machine learning methods and deep learning Convolutional Neural Network (CNN) models are the basis of this research. Traditional machine learning algorithms for lane
detection are manually tuned parameters for feature extraction. The image was pre-processed using grayscale, noise filtering, and edge detection to obtain the edge points of the lane
lines.

A Convolutional Neural Network eliminates the need for manual feature extractions. This deep learning architecture for lane detection 1s a predictive model that is consistently fed
data to improve the car’s predictive abilities. This deep learning approach uses segmentation techniques for lane detection. The Convolutional Neural Network model was investigated,
visualizing the weaknesses of lane detection patterns when camera filters alter images after training the neural network.

In this work, conventional lane detection and deep learning models process the image-based dataset. These models present vulnerabilities in popular lane detection algorithms. The
vulnerabilities arise from the variability of the road condition in traditional lane detection. Adding camera filters to images after the neural network has been trained caused uncertainty
when visualizing weaknesses in pattern data. An investigation to determine the security of computer vision image processing for lane detection aims to promote public trust in automated
driving and improve the accuracy of lane detection algorithms. Finally, we present work in progress, survival techniques to advance the security issues of spoofed 1image processing
techniques for lane detection.
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