
The vehicle subsystems used for this work are
from a popular 2020 vehicle. These subsystems
involved include the Cockpit Control Unit(CCU),
Telematics Unit, Central Gateway, and the
Harness Instrument Panel. Ghidra is used
throughout this research to analyze firmware
received from the vehicle. Ghidra is an
open-source reverse engineering software
used to disassemble binary machine code back
into a more user-friendly language. Qemu is
also used to run the firmware in a virtual
environment for testing. Qemu is an open
-source processor/CPU emulator and virtualizer.
This work also involves assessment of
vulnerabilities on the CAN bus. CAN is an
international Standard Organization (ISO)
defined serial communications bus originally
developed for the automotive industry to replace
the complex wiring harness with a two-wire bus.

Abstract Preliminary Results

References

Today’s vehicles have advanced embedded
system technology driving the complexity of their
navigation, infotainment, and safety systems.
The vehicle infotainment system is responsible
for the smooth operation of all communication
and entertainment functions, including
navigation services, music, podcasts, phone
calls, and video streaming. This system is also
interconnected with many other critical systems
to support the vehicle’s operation, including
external cameras and sensors. This presents
the potential for many possible vulnerabilities
that can be detrimental to the car’s security,
leading to many safety concerns in the case of
future attacks. This research focuses on the
infotainment-related electrical systems of a 2020
vehicle to allow in-situ testing of various cyber
techniques and algorithms to mitigate attacks
through various control surfaces, i.e., CAN bus,
Wi-Fi, and Bluetooth.

[1] D. Stabili, “READ : Reverse Engineering of,” vol. 14, no. 4,
pp. 1083–1097, 2019.

[2] T. Huybrechts, Y. Vanommeslaeghe, D. Blontrock, G. Van
Barel, and P. Hellinckx, “Automatic reverse engineering of
can bus data using machine learning techniques,” Lect.
Notes Data Eng. Commun. Technol., vol. 13, no.
November, pp. 751–761, 2018, doi:
10.1007/978-3-319-69835-9_71.

[3] W. Choi, S. Lee, K. Joo, H. J. Jo, and D. H. Lee, “An
Enhanced Method for Reverse Engineering CAN Data
Payload,” IEEE Trans. Veh. Technol., vol. 70, no. 4, pp.
3371–3381, 2021, doi: 10.1109/TVT.2021.3063261.

This research was done in stages:

❖ Stage 1: Firmware Exfiltration and Analysis
➢ The CCU’s NAND flash memory was

desoldered from the PCB
➢ The firmware was extracted from the flash

memory using an eMMC reader
➢ The firmware was immediately digested into

Ghidra for assessment

❖ Stage 2: Firmware Emulation
➢ The Firmware was first emulated in QEMU

using the extracted files and the information
learned from digesting them in Ghidra.

❖ Stage 3: Vulnerability Testing
➢ Messages are sent on the different CAN

communication lines, to look for a response
or reaction.

Background

Technical Approach

www.iotcream.com

Acknowledgments

IEEE HOST 2017

Automobile Vulnerability Assessment Using Ghidra
Robert Hill, Loic Tchuenkou, Vinton Morris, Albert Sweets, Edmund Ahovi, Denzel Hamilton,

Dr. Kevin Kornegay, Dr. Md Tanvir, Dr. Michel Reece, Dr. Kofi Nyarko
Morgan State University Center for Reverse Engineering and Assured Microelectronics, Baltimore, MD

Future Work

• National Security Agency (NSA)

• Cybersecurity Assurance and Policy Center (CAP)

Figure 1: Testbed configuration

Figure 2: CCU

Figure 3: Portion of the files pulled
from the flash memory

Automobile Vulnerability Assessment using Ghidra
Robert Hill, Loic Tchuenkou, Vinton Morris
Dr. Kevin Kornegay, Dr. Md Tanvir Arafin

Morgan State University Cybersecurity Assurance and Policy Center, Baltimore, MD

The firmware was successfully extracted from
the flash memory. Some of the files and their
descriptions are shown in figure 3. These
descriptions were assessed through Ghidra
analysis. The firmware was also successfully
emulated in virtualized hardware using QEMU.
We have not yet been able to get a response
from CAN bus messages.

Next steps include:
❖ Running the firmware on our own hardware

to physically test for potential vulnerabilities.
❖ Further testing of the CAN communication

bus and addition of more systems onto the
bus.

❖ Extracting firmware from other subsystems
in the vehicle testbed.

