Automobile Vulnerability Assessment using Ghidra

MORGAN

STATE UNIVERSITY.

Background

The vehicle subsystems used for this work are
from a popular 2020 vehicle. These subsystems
involved include the Cockpit Control Unit(CCU),
Telematics Unit, Central Gateway, and the
Harness Instrument Panel. Ghidra is used
throughout this research to analyze firmware
received from the vehicle. Ghidra is an
open-source reverse engineering software
used to disassemble binary machine code back
into a more user-friendly language. Qemu is
also used to run the firmware Iin a virtual
environment for testing. Qemu is an open
-source processor/CPU emulator and virtualizer.
This work also involves assessment of
vulnerabilities on the CAN bus. CAN is an
international Standard Organization (I1SO)

defined serial communications bus originally
developed for the automotive industry to replace
the complex wiring harness with a two-wire bus.

Figure 1: Testbed configuration

Robert Hill, Loic Tchuenkou, Vinton Morris

Dr. Kevin Kornegay, Dr. Md Tanvir Arafin

Morgan State University Cybersecurity Assurance and Policy Center, Baltimore, MD

Abstract

Today’'s vehicles have advanced embedded
system technology driving the complexity of their
navigation, infotainment, and safety systems.
The vehicle infotainment system is responsible
for the smooth operation of all communication
and entertainment functions, including
navigation services, music, podcasts, phone
calls, and video streaming. This system is also
interconnected with many other critical systems
to support the vehicle’s operation, including
external cameras and sensors. This presents
the potential for many possible vulnerabilities
that can be detrimental to the car’'s security,
leading to many safety concerns in the case of
future attacks. This research focuses on the
infotainment-related electrical systems of a 2020
vehicle to allow in-situ testing of various cyber
techniques and algorithms to mitigate attacks
through various control surfaces, i.e., CAN bus,
Wi-Fi, and Bluetooth.

Technical Approach

This research was done in stages:

% Stage 1: Firmware Exfiltration and Analysis
> The CCU’s NAND flash memory was
desoldered from the PCB
> The firmware was extracted from the flash
memory using an eMMC reader
> The firmware was immediately digested into
Ghidra for assessment

% Stage 2: Firmware Emulation
> The Firmware was first emulated in QEMU
using the extracted files and the information
learned from digesting them in Ghidra.

% Stage 3: Vulnerability Testing
> Messages are sent on the different CAN
communication lines, to look for a response
or reaction.

Path

sdb1.img

sdb2.img

sdb3.img
sdb5.img
sdb6.img
sdb7.img
sdb8.img
sdb%.img
sdb10.img
sdb11.img
sdb12.img
sdb13.img

sdb14.img

Figure 3:

Description

hvimage_abl_emmc
Intel In-vehicle Automotive Boot Loader (ABL)

IPK - open embedded software package format

hvimage_abl_emmc
Intel In-vehicle Automotive Boot Loader (ABL)

IPK - open embedded software package format
<empty>

"QNX v1.2b Boot Loader”
"QNX v1.2b Boot Loader”
"QNX v1.2b Boot Loader”
"QNX v1.2b Boot Loader”
'‘QNX v1.2b Boot Loader”
"QNX v1.2b Boot Loader”
"QNX v1.2b Boot Loader”
System partition.

System partition.

SQLite 3.x Database:
gn_cds.gdb
gn_itoc.gdb
gn_itxt.gdb
gn_lists.gdb
gn_mdata.gdb
history.txt

version.txt

www.lofcream.com

Flash on he back
Figure 2: CCU

Size (dec)

33554432

33554432

1024

125829120

125829120

734003200

734003200

134217728

104857600

5242880000

4293918720

4293918720

1677721600

Size (hex)

0x2000000

0x2000000

0x400

0x7800000

0x7800000

0x2BC00000

0x2BC00000

0x8000000

0x6400000

0x138800000

OxFFFO0000

OxFFFO0000

Ox64000000

File Type

Linux rev 1.0 ext2 filesystem data

Linux rev 1.0 ext2 filesystem data

x86 boot sector, code offset 0x0
x86 boot sector, code offset Ox10
x86 boot sector, code offset Ox10
x86 boot sector, code offset 0x10
x86 boot sector, code offset 0x10
x86 boot sector, code offset 0x10
x86 boot sector, code offset O0x10
x86 boot sector, code offset 0x10
Linux rev 1.0 ext4 filesystem data
Linux rev 1.0 ext4 filesystem data

Linux rev 1.0 ext4 filesystem data

Virtual Disk

/ d e‘\',,""\"d a
/dev/vdb

/ 'd e V ,"f‘\/ d C

Portion of the files pulled
from the flash memory

0 MORC;AN
C BERSECURITY ASSURANCE
A P OLICY CENTER

Preliminary Results

The firmware was successfully extracted from
the flash memory. Some of the files and their
descriptions are shown in figure 3. These
descriptions were assessed through Ghidra
analysis. The firmware was also successfully
emulated in virtualized hardware using QEMU.
We have not yet been able to get a response
from CAN bus messages.

Future Work

Next steps include:

“* Running the firmware on our own hardware
to physically test for potential vulnerabilities.

“ Further testing of the CAN communication
bus and addition of more systems onto the
bus.

% Extracting firmware from other subsystems
In the vehicle testbed.

Acknowledgments

* National Security Agency (NSA)

* Cybersecurity Assurance and Policy Center (CAP)

References

[1] D. Stabili, “READ : Reverse Engineering of,” vol. 14, no. 4,
pp. 1083-1097, 2019.

[2] T. Huybrechts, Y. Vanommeslaeghe, D. Blontrock, G. Van
Barel, and P. Hellinckx, “Automatic reverse engineering of
can bus data using machine learning techniques,” Lect.
Notes Data Eng. Commun. Technol., vol. 13, no.
November, pp. 751-761, 2018, doi:
10.1007/978-3-319-69835-9 71.

[3] W. Choi, S. Lee, K. Joo, H. J. Jo, and D. H. Lee, “An
Enhanced Method for Reverse Engineering CAN Data
Payload,” IEEE Trans. Veh. Technol., vol. 70, no. 4, pp.
3371-3381, 2021, doi: 10.1109/TVT.2021.3063261.

IEEE HOST 2017

