
The University of South Alabama and its School of Computing
offers undergraduate degrees in Information Technology,
Information Systems, and Computer Science. Graduates of
these programs are required to participate in a senior
capstone experience course (CIS-497) which gives
opportunity for teams of 4-5 students to work on real-world
projects proposed by industry, academic, and government
partners to the school. The Center for Forensics, Information
Technology, and Security (CFITS) coordinates the participation
of various partners to propose projects that help students put
into practice the systems development lifecycle methods they
have learned as part of their curriculum.

Capstone Project: Pelz Key Wrapping and Unwrapping
Maureen Van Devender, Dylan Johnson, Terry Foster, Tyler Jones, Blaine Galle

School of Computing, University of South Alabama

1. Pelz. National Security Agency,
2022. https://github.com/National
SecurityAgency/

Prior to our efforts, Pelz included no mechanism to enforce only
authorized users or applications to request key wrapping and/or
unwrapping services. To meet the first functional requirement, the
team added two new JSON request types:
1. Signed Key Wrap Request and
2. Signed Key Unwrap Request
We implemented additional Pelz functionality needed to parse
the JSON messages representing these two new request types.
Finally, we added new and modified some existing unit tests for
the JSON request parsing features. The test suite now passes JSON
requests in both unsigned and signed request format to Pelz,
where they are correctly parsed and passed to the Pelz secure
enclave where they can be processed with an appropriate
response being returned to the requester.

The second functional requirement was met by augmenting the
test suite, using features included in the JSON library to support
sending signed Pelz requests. These signed requests include
elements of the signature computed and its length. Figure #1
shows the Key Wrap Request cJSON object.

The third functional requirement was was only partially completed
due to time constraints, the complex architecture of the project,
and some unexpected iteration required in the earlier phases of
the project. Completion of requirements one and two were
predecessors for the task.

Early in the project, it became apparent that the complexities of
implementing the fourth functional requirement within an Intel
SGX enclave was a very aggressive goal. Authoring code
supporting the Intel SGX architecture has a somewhat steep
learning curve. As part of the development environment setup,
however, the team was able to successfully install the SGX SDK.

Pelz[1] is a tool that provides key wrapping and unwrapping
services backed by trusted hardware. By using Intel's Software
Guard Extensions (SGX), Pelz maintains key encryption keys
(KEKs) within a secure enclave and provides key wrapping and
unwrapping services to other processes running on a machine,
without ever exposing these KEKs to system memory in
plaintext. Pelz provides an example of this functionality as a
plugin for Apache Accumulo, an open-source, NoSQL
database.

Pelz is a prototype created by the NSA, and its features are
being actively developed. Pelz currently provides its wrapping
services as a Linux service, accepting JSON requests across a
local socket and responding in the same manner.
There is currently no access control mechanism built into Pelz.
Currently, the prototype allows anyone with socket access to
request wrapping and unwrapping of keys with any key-
encrypting key held within a “trusted execution environment”
(TEE).

The contribution of this project is to develop a solution for
controlling the use and access of keys within the Pelz system.
The access control mechanism should be simple and generic.
This will require two of distinct steps:
 Pelz will need to provide an option to associate a KEK with an

'owner' via a public key.
 A signature must be added to the JSON object signing the

wrapping/unwrapping request.
 Implementing and adding these features to the existing Pelz

code base is the project goal.
 Pelz is in open-source, and the students are expected to

contribute to the open-source repository.

Currently known constraints:
 Must support code submission via Pelz in the open-source

GitHub repository
 Must be able to be integrated into the existing code base

and address dependencies
 with Intel SGX, thus it is most likely that contributions will be

coded in C
 Must be maintainable and well formatted code
 Must run within a Linux environment

1. The software should allow an authorized user to send a
request for key wrapping/unwrapping services.

2. The request system should be able to use the user’s
provided private key to create a signature that is sent as
part of a JSON request to the Pelz key management system.

3. The system should validate requests, using the user’s public
key to verify the signature included in the JSON request. This
enables authentication of the requestor.

4. The system should allow key-encrypting keys within a
protected space to be assigned to particular users based
on their public key. This will support authorization of a JSON
request (i.e., key wrapping/unwrapping services using the
requested KEK are authorized for the authenticated
requestor).

1. All code produced and pushed to the repository should be
readable. Code formatting and commenting should follow
accepted software development practices. "Readability"
should be a primary consideration in how code is written
and structured.

2. Source control practices must be employed and must
support eventual submission as a pull request on the
project's GitHub repository. To the largest extent possible,
commits should be incremental. Multiple, smaller and more
focused "pull requests" are typically preferred over a single,
more comprehensive submission.

3. All code should be tested and checked for correctness and
adherence to accepted coding standards. Ideally, code
submissions will include unit tests run within the test suite.

4. Code must minimize any platform-specific dependencies.
For example, generic path names should be employed.

Testing was done through the Pelz test suite hosted on an Ubuntu
22.04 virtual machine using Oracle VirtualBox.
The test environment was set up using a setup script provided by
the client and altered by the team. The script included the
installation and configuration for all Pelz prerequisites including
the SGX SDK, cJSON, uriparser library, libkmip library, and TPM 2
simulator.
1. Public and private keys were passed successfully to notify Pelz

to expect a signed request.
2. Request asserts were used to check values for their expected

format before processing, rendering either a pass or fail.

QR
Code

Lessons Learned
The team utilized an AGILE methodology for development. The
team focused on detailed planning and taking into
consideration the project scope, activities, and risks. Project risks
were mitigated by identifying potential risks early on and
discussing risks often. Weekly meetings with the stakeholders
were fundamental for the success of the project. the
stakeholders were clear about the needs of the project which
ensured the team was able to stay on track and deliver the
functional requirements. However, due to time constraints some
of the functional requirements fell out of the project scope.

Respect among team members and stakeholders was a crucial
part of the team’s success. When a team member encountered
any difficulties, other team members were able to assist them.
Throughout the course of the project the team maintained
strong communication by staying in touch on a regular basis
using messaging applications. Through frequent communication
and general respect among members, the team maintained
strong morale which in turn contributed to the success of the
project.

Introduction Functional Requirements Test ResultsRequirements Assessment

Problem Domain

Objective and Goals
Non-Functional Requirements

Bibliography

Figure 2

Figure 1

	Slide Number 1

