
Evaluating Defensive Countermeasures 
for Software-Based Hardware Abstraction

James Carambat, J. Todd McDonald, Todd R. Andel, Samuel H. Russ
School of Computing, University of South Alabama

Software protection is one of the most important methods of preventing
adversaries from obtaining a software owner’s intellectual property (IP)
within sold and distributed software programs. Statistics from 2021
indicate that software piracy increased 20% 30% during the pandemic and
that 37% of software on tested machines worldwide was unlicensed. It was
also estimated that 21% of all internet consumers download and use illegal
games. Unlicensed software, in this case, represents cracked software that
has been embezzled from the original owner and resold by an adversary.
These types of attacks are labeled as man at the end (MATE) attacks,
where an adversary is a legitimate end user who has full control and
authority over a target software environment, giving free range to reverse
engineering, tampering, and cloning of the program. A novel method of
program protection called software-based hardware abstraction (SHBA)
specifically targets adversarial reverse engineering, in the attempt to
circumvent or completely defeat automated tools that are used by MATE
attacks in finding secret information hidden in programs. Since many
programs rely on checking secret information in the form of PIN codes,
passwords, or keys for authentication, SBHA is focused initially on
protection of point-functions, which are essentially IF statements that
return true for only one input out of all possible others. SBHA takes such
software constructs and transforms them into a digital logic
representation. The circuit is then transformed back into software, which
results in a protected variant of the original program. The feature of
concentration in this study will be on modifying the circuits in a way that
an adversary could not easily return the value of the program point
function, given a recovered netlist of the circuit from a software program.
These methods of circuit modification and protection, once implemented,
will be analyzed by hardware specific tools, specifically ABC synthesis tool,
Java Binary Decision Diagrams (JDD), and the z3 SAT solver. The goal of the
research is to characterize the strength of countermeasures against such
state-of-the-art tools that essentially act in the role of an attacker.

 Software-based hardware abstraction (SBHA) replaces 
code/software-based structures with a virtual digital logic circuit, 
which is represented as code (software)

QR Code

ABSTRACT RESEARCH QUESTIONS

WHAT IS SBHA?

ACKNOWLDGEMENTS

This research was supported in part 
by the National Science Foundation 

under grant DGE-1564518.

METHODOLOGY

Case Study:
 Step 1: Create benchmark circuits which are the basis of password-query 

point functions (1,8,12,16,20 character passwords): these represent 
unprotected SBHA circuit netlists

 Step 2: Use semantic-preserving circuit transformations on the 
benchmark circuit set that are potentially able to deter or hinder SOTA 
circuit analysis tools and techniques

 Step 3: Evaluate both unprotected and protected versions of benchmark 
circuits against synthesis, BDD, and SAT-based analysis tools

 Step 4: Compare effectiveness of transformations against tools

 What is the power of an adversary that recovers a (circuit) 
netlist from an SBHA-protected binary?

 Can we produce effective countermeasures to defeat MATE 
attacks that target netlist analysis from SBHA programs?

INITIAL RESULTS

 Take a program P which has a 
point-function for checking a 
password (%), which is an 
embedded secret

 The function of program P can 
be represented as a Boolean 
logic circuit C that will output 
a 1 (true) only if the input 
matches the required 
password

 The digital logic circuit C can 
be converted back into 
traditional software, thus 
virtualizing the original 
program P into a circuit-based 
version (PHW) 

 The software-based 
abstraction can then be used 
to replace the original point 
function check and create a 
new version of program P 
(referred to as P’) – thus the 
IF statement condition is 
replaced with a Boolean logic 
abstraction (SBHA)

 Four different types of 
multiplier/divider 
configurations (Type A, 
B, C, D) are considered 
for insertion BEFORE 
the point function 
circuit as an anti-SAT 
and anti-BDD approach

 Initial results of 1-char password circuit against 3
different forms of attackers (SAT, BDD, synthesis) show
Type A/B completely successful


	Evaluating Defensive Countermeasures for Software-Based Hardware Abstraction��James Carambat, J. Todd McDonald, Todd R. Andel, Samuel H. Russ��School of Computing, University of South Alabama

