### Hands-on Learning Experiences for Cyber Threat Hunting Education

Jinpeng Wei, Bei-Tseng "Bill" Chu University of North Carolina at Charlotte Deanne Cranford-Wesley Forsyth Technical Community College





# UNC CHARLOTTE

### Overview

- Introduce Cyber Hunting
- Skills needed for Cyber Hunting
  - Community College
  - 4-year programs
  - Advanced (competition)
- Cyber Hunting Labs We Built
- Demos





### Cyber Hunting

- Cyber threat hunting has emerged as a critical part of cyber security practice. However,
  - there is a severe shortage of cybersecurity professionals with advanced analysis skills for cyber threat hunting
- We have developed freely-available, hands-on learning materials (labs) for cyber threat hunting
- Our lab environment contains real threats (e.g., malware) against real software (e.g., Operating Systems and applications), and real security datasets, covering two important skill sets
  - Threat analysis: how to detect active and dormant malware, analyze its activities, and assess its impact
  - Security data analytics: how to search and probe for anomalies in a variety of datasets using multiple analytical skills, such as statistical analysis, machine learning, and data visualization





### Cyber Hunting

- Cyber Hunting
  - Find unknown threats (e.g. malware, insider threats)
- Contrast with other cybersecurity activities
  - Cyber Defense
    - Harden systems (e.g. IDS, IPS, Patching)
  - Penetration Testing
    - Discover unknown vulnerabilities
  - Forensics
    - Part of incidence response: collect evidence, understand the scope of damage



### Threat Detection and Analysis Labs

- Objective: help a student learn how to detect active and dormant malware (either on disk or in memory), analyze its activities, assess its impact, and minimize its damage
- Covered Threat Hunting Skill Set
  - Incident detection
  - Malicious code analysis
  - Memory forensic analysis
  - Security data analysis





### Design of the Hands-on Labs

- Each hands-on exercise covers a set of threat hunting skills that are needed to deal with a representative, real-world malware
- Labs are at various difficulty levels
- The exercise is created by installing representative malware into a lab environment and then taking a snapshot of the virtual machine
- The student's task is to use the snapshot to uncover what is happening, without any pre-knowledge of the particular malware installed
- Necessary analysis and development tools are installed in the lab environment for the student's use
- The student will submit a report of discoveries for each lab. The report will be graded based on the completeness and clarity of the submission
- Each lab exercise is packaged in one or more virtual machine snapshots



### Representative Lab Difficulty Levels

- Easy Labs
  - Malware does not try to hide (e.g., by choosing common names)
  - Malware has persistent networking activities
  - Malware behavior does not depend on an external server
- Intermediate Labs
  - Malware runs as a service
  - Malware persists over reboot
  - Malware behavior is triggered by commands from an external server
- Difficult Lab
  - Malware is fileless
  - Malware has a rootkit component that hides malicious processes, files, or network connections from user-level analysis tools
  - Malware employs obfuscation and/or anti-disassembly to thwart static analysis
  - Malware employs anti-debugging and/or anti-VM techniques to thwart dynamic analysis





### Tools Available in the Labs

- Debuggers (e.g., OllyDbg and Windbg)
- Disassemblers (e.g., IDA)
- Basic static analysis tools (e.g., CFF Explorer, Dependency Walker, PEiD, PEview, UPX, Resource Hacker),
- Basic dynamic analysis tools (e.g., Process Monitor, Process Explorer, System Monitor, Regshot, WinObj Object Manager, Sysinternals, ApateDNS, Netcat, iNetSim, and NtTrace)
- Packet sniffers (e.g., Wireshark)
- Forensic analysis tools (e.g., FTK, EnCase, Volatility, Memoryze)
- Memory dump analysis tools (e.g., Rekall, Redline, and Comae Windows Memory Toolkit)



### Security Data Analytics Labs

- Objective: help a student learn how to search and probe for anomalies in a variety of datasets (e.g., event logs, packet captures, and IDS/IPS alerts)
- Covered Threat Hunting Skill Set
  - Basic search
  - Statistical analysis
  - Machine learning
  - Data visualization





### Insider Threat Hunting

#### Overview of C0mp@ny:

C0mp@ny is an IT solutions company headquartered in Charlotte.

- ✤ It has 100 employees.
- The C0mp@ny has offices in Charlotte NC, Paris, London, and Luxembourg worlwide.
- There are 4 departments (HR, Research, IT, Finance), and each employee is associated with only a single department.
- ✤ Each department has different allocated resources.
- The employees are allowed to work from the office or from home.
- Some employees get to also travel to visit other worldwide office locations.
- The general working hours are from 8am to 5pm. However, some employees work from home and also access the company resources outside the regular working hours.





### Logs Used

- Datalogs- Contains access and authentication logs for 100 employees over 12 months (October 2015 To September 2016) period.
- Employee Info- Contains employee ID, name, home address (latitude, longitude), department, start date, end date.
- **Resource Info-** Contains mapping of resources to departments.
- ✤ Office Locations- Contains latitude and longitude of 4 office locations.

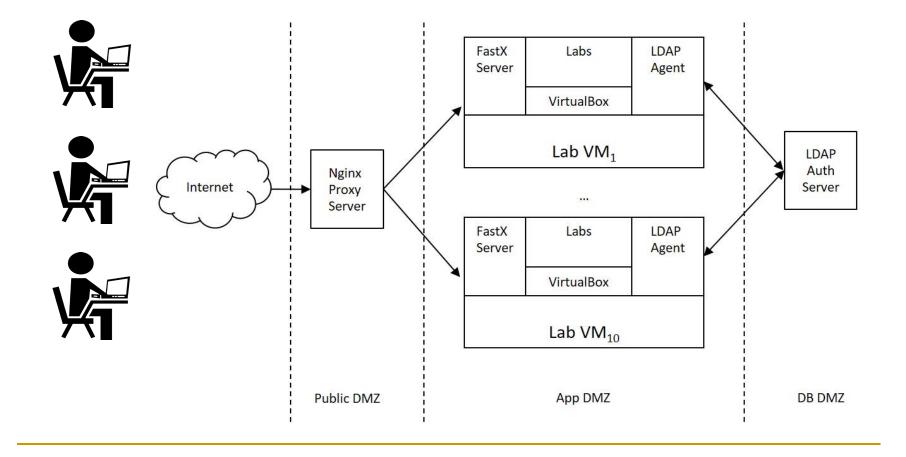


### Insider Threat Hunting Activities

- Access before login
- Access location other than home or office
- Access resources outside of department
- Access after leaving the company
- Invalid employee ids
- Failed attempts over a "short" period.
- Print command to non-printers
- More than one user accounts, same IP, same time
- Time access pattern






### Implementation

- Lab environment is hosted on dedicated servers
- We choose VirtualBox as the virtualization tool
- Malware samples used in the labs are selected from real-world repositories such as VirusSign or other reputed sources
- We provide a manual for each lab
- A student first requests an account to our servers at the project page: <u>https://sites.google.com/uncc.edu/cyberthreathunting/home</u>
- Then the student can log in to our servers, view the list of available labs, choose and start labs to finish the exercises, and upload his/her analysis reports





### The Topology of Our Lab Environment





### The Threat Hunting Project Page

https://sites.google.com/uncc.edu/cyberthreathunting/labs





#### **Malware Analysis**

This lab will give you hands on experience for the Malware Analysis

Click here to register the access to lab



#### Login Location Anomaly Detection

This lab will give you hands on experience to identify the access of an application by the employee from locations other than the home or office.



### The Threat Hunting Project Page (cont.)

#### https://sites.google.com/uncc.edu/cyberthreathunting/labs



#### **Resource Anomaly Detection**

This lab will give you an experience to identify the access of any company resources by an employee outside their department.



#### **Employee Activity Anomaly Detection**

This lab will give you an experience to identify the unauthorized access of any company resources by an employee who has already resigned.

2019, All rights reserved



### New User Registration Page



| Registration Form                          |
|--------------------------------------------|
| Sign up using this form to access the lab. |
| * Required                                 |
| Email address *                            |
| Your email                                 |
|                                            |
| First Name *                               |
| Your answer                                |
| Last Name *                                |
| Your answer                                |
| Organization *                             |



### Demo Lab: Keylogger Discovery and Analysis

- Prominent behavior of the malware
  - Disguises under an innocuous name: javaw.exe
  - Records keystrokes and saves them in a file
  - Contacts a C&C server at total-updates.com
  - Receives and acts upon several commands
    - One command is to exfiltrate the recorded keystrokes
  - Persists over reboot

Demo video



### Introduce Cyber Hunting in Community College

- Incorporate cyber threat hunting into the curriculum for community college students
  - Identify skill sets for cyber threat hunting appropriate for community college instruction
  - Contribute input to Knowledge Units for CAE2Y
- Design cyber hunting instructional material suitable for community college students
  - Entry-level firewall configuration lab
  - Intermediate-level firewall configuration lab
  - Entry-level Wireshark lab
  - Intermediate-level Wireshark lab
- Introduce and document the use in a community college setting of new instructional material developed by the UNCC team
- Provide other expertise and resources as available through Forsyth Tech's designation as Central Eastern Regional Resource Center for Academic Excellence in Cyber Defense



## UNC CHARLOTTE

### Implementation

- Labs accessible through web portal:
  <u>netlab.forsythtech.edu</u>
- Netlab+ interface grants students access to lab topology, lab documentation, and VMs.
- Instructor and student resources available
- Currently implemented:
  - Entry-level Wireshark lab
  - Intermediate-level Wireshark lab





### Intermediate-level Wireshark lab

### **Backdoor Discovery**

- Accessed through Netlab+ web portal
- Shows how an attacker/hacker makes an open connection to a host PC.
- Similar to previously mentioned Keylogger Discovery





### Acknowledgement

- NSA funding under S-004-2017 CAE-C
- Mohammed Shehab
- Ehab Al-Shaer
- Md Rabbi Alam
- Trevon Williams
- Mai Moftha
- Chandni B. Jivani
- Michael Johnson
- James Brown
- Crystal Baldwin





### Thank You!



Dr. Jinpeng Wei<sup>1</sup>, Dr. Bei-Tseng "Bill" Chu<sup>2</sup> University of North Carolina at Charlotte <sup>1</sup>jwei8@uncc.edu, <sup>2</sup>billchu@uncc.edu

Dr. Deanne Cranford-Wesley Forsyth Technical Community College <u>dwesley@forsythtech.edu</u>



