
Building secure software
systems using security patterns

Eduardo B. Fernandez
Florida Atlantic University

Boca Raton, FL, USA
fernande@fau.edu

Outline
• Introduction- motivation
• Security patterns and abstraction
• Catalogs of security patterns
• A methodology to build secure systems
• Reference architectures: a Cloud architecture
• Security verification
• Conclusions

11/27/19 3

About me

• Eduardo B. Fernandez (Eduardo Fernandez Buglioni)
• Professor of Computer Science at Florida Atlantic

University, Boca Raton, FL., USA
• BSEE UTFSM, Chile, MS EE Purdue U., PhD CS UCLA
• Worked at IBM for 8 years (L.A. Scientific Center).
• Wrote the first book on database security (Addison-

Wesley, 1981) and two books on security patterns (2006
and 2013)

• Author of many research papers (Google Scholar h-index
40, i10index 159)

• Consultant to IBM, Siemens, Lucent, Motorola, Huawei,…

11/27/19 4

The value of information

• We depend heavily on computers; most of the devices that make our life safe and
convenient, e.g. cell phones, vehicle controls, and building controls, use some
type of software to store and process information

• We also rely on institutions, public or private; we are born in hospitals, then go to
schools, join clubs, get jobs in the government or private businesses, get married
at some church or public office, travel using some agency, etc. All these
institutions use computers to keep information about us.

• In general, the data of an institution has a great value; it may represent
customers, orders, bills, business plans, course grades, etc. It might even be its
product.

• Data corruption in a hospital may result in patients getting the wrong medication,
leakage of military information could endanger an army in war, and erroneous
aircraft maintenance information could compromise passenger safety,
unauthorized access to a bank information may result in large money losses.

Motivation for security

• Data and other resources are assets, items that have value for
individuals and institutions; security is the protection of these assets,
including enterprise and individual information.

• We need this protection because there are people who intentionally
try to read/copy or modify information either for their own gain, for
political purposes, or for the sake of disruption

• In addition to the direct monetary cost there may be losses of
productivity, and even endangering of lives

Do we have a problem?

• Almost every month we have a major security incident.
• Companies: Target, Sony (twice), Home Depot, Goodwill, JP Morgan,

Chick-fil-A, Neiman Marcus, Michaels, Yahoo (twice), Equifax,Uber,
Marriott, British Airways, Facebook, Under Armour,…

• Government: IRS, DOE, OPM,…
• Cyber-Physical systems: German steel mill, Aramco, Ukraine Grid…
• Medical systems and devices: Anthem
• Point of sale systems: Target, Michaels, Home Depot, …

Software complexity is constantly increasing

Embedded systems
• The average device now has one million lines of code, and that

number is doubling every two years.
Vehicles
• A modern passenger jet, such as a Boeing 777, uses about 4 million

lines of code. Older planes such as a Boeing 747 had only 400,000
lines of code.

• A car uses 30-50 electronic control units (ECUs) that altogether
include as much as 100 M lines of code.

Code size
https://www.linkedin.com/pulse/20140626152045-3625632-car-software-100m-lines-of-code-and-counting

Reasons for system vulnerabilities

• Other than complexity, another important reason for systems
weakness is that security is built as an add-on, in piecemeal fashion,
parts of the system are secured using specific mechanisms but there
is rarely a global security analysis of the complete system

• If done, different models may be used in different parts, e.g., one for
the databases and another for wireless devices

• However, security requires a holistic approach to block all possible
ways of attack or at least control their effects

• Security is not composable: combining secure units does not produce
a secure system, securing separate code components is not enough

Use of abstraction

• The only way to provide a unification in the presence of myriad
implementation details of the component units is to use abstraction.
In particular, we can apply abstraction through the use of patterns.

• The description of architectures and mechanisms using patterns
makes them easier to understand, provides guidelines for design
and analysis, and can define a way to make their structure more
secure.

• Their abstraction properties make them ideal for dealing with highly
complex systems and for holistic views.

Patterns

• A pattern is a solution to a recurring
problem in a specific context

• The idea comes from the architecture of
buildings (Christopher Alexander)

• It was applied initially to software but it
has been extended to other aspects.

• It appeared in 1994 and it is slowly being
accepted by industry.

• A security pattern solves a security
problem, usually how to control a threat

Abstraction

…
Pattern

…

Existing Real Systems New or Other Real Systems

Derivation and validation of patterns

Software
Architecture Security

Security
Patterns

Software
Engineering

Where patterns fit in software design

Value of security patterns
• Can apply security principles (Least privilege) or

describe security mechanisms able to stop specific
threats(Firewalls) in all architectural layers

• Can guide the design and implementation of the
security mechanism itself

• Can guide the use of security mechanisms in an
application (stop specific threats)

• Can help understanding and use of complex
standards (XACML, WiMax)

• Convenient for teaching security principles and
mechanisms

Patterns can be defined at all architectural levels

• At the conceptual model we can define abstract security patterns
• These patterns can be mapped to the lower architectural layers
• The lower-level patterns add aspects specific to their layer, e.g., a

database pattern will use database concepts such as views and database
items (columns, tuples,…)

• By doing this, we can obtain a holistic view of the system security
• An Abstract Security Pattern (ASP), describes a conceptual security

mechanism that realizes one or more security policies able to control
(stop or mitigate) a threat or comply with a security-related regulation
or institutional policy (no implementation aspects).

Architectural layers

Application

Database

Operating
System

Hardware

Network

Distribution

Conceptual security

• Security is a quality aspect that constrains the semantic behavior of
applications (by imposing access restrictions), so the requirements
stage is the right development stage to start addressing security

• However, we only want to indicate at this stage which specific security
controls are needed, not their convenient or optimal implementation.

• For example, in bank applications we only want to specify the
semantic aspects of accounts, customers, and transactions with their
corresponding restrictions.

Security and application semantics

• In the bank case, we need to specify that customers are the only ones
who can perform transactions on their own accounts and similar type
of constraints.

• The constraints come from the semantics of the application and from
the necessity to defend against expected threats.

• At this stage, it appears useful to provide a set of patterns (or other
artifacts) which define abstract security mechanisms that can
describe these restrictions, these are ASPs

An ASP example: Authenticator

• This is the Intent section of an Authenticator pattern: “When a user or
system (subject) identifies itself to the system, how do we verify that the
subject intending to access the system is who it says it is? Present some
information that is recognized by the system as identifying this subject.
After being recognized, the requestor is given some proof that it has been
authenticated.”

• Authentication restricts access to a system to only registered users; it
handles the threat where an intruder enters a system and may try to
perform unauthorized access to information

• It is clear that there are many ways to perform this authentication, that go
from manual ways, as done in voting places, to purely automatic ways, as
when accessing a web site, but all of them must include the requirements
of the abstract Authenticator

Abstract authentication

Authentication as an abstract function requires a basic sequence of
activities. Concrete realizations of this sequence implement these steps
in different ways but all must perform these two steps:
• The subject requests to enter a system indicating its identity and

presenting some proof of identity.
• If the system recognizes the subject using its identity information, it

grants her entrance to the system and provides her with a proof of
authentication for further use. If not, the request is denied.

• We can define a hierarchy of authentication patterns starting from
the abstract Authenticator

An authentication hierarchy

Authenticator

Credential-based
Authenticator

Password-based
Authenticator

X.509
Certificate

SAML-based
Authenticator

Class diagram of Abstract Authenticator

Subject Authenticator

request
* 1Authent

Proof of
Identity

Proof of
Authentication

Authentication
Information

11..* 1

<<create>>

Sequence diagram for the use case “Authenticate a subject”

Forces of Abstract Authenticator
• Closed system. If the authentication information presented by the user is

not recognized, there is no access. In an open system all subjects would
have access except some who are blacklisted for some reason.

• Registration. Users must register their identity information so that the
system can recognize them later.

• Flexibility. There may be a variety of individuals (users) who require access
to the system and a variety of system units with different access
restrictions. We need to be able to handle all this variety appropriately or
we risk security exposures.

• Dependability. We need to authenticate users in a reliable and secure way.
This means a robust protocol and a high degree of availability. Otherwise,
users may fool the authentication process or enter when the system
authentication is down.

• Protection of authentication information. Users should not be able to read
or modify the authentication information. Otherwise, they can give
themselves access to the system.

Forces II
• Simplicity. The authentication process must be relatively simple or the users or

administrators may be confused. User errors are annoying to them but administrator errors
may lead to security exposures.

• Reach. Successful authentication only gives access to the system, not to any specific resource
in the system. Access to these resources must be controlled using other mechanisms,
typically authorization.

• Tamper freedom. It should be very difficult to falsify the proof of identity presented by the
user.

• Cost. There should be tradeoffs between security and cost, more security can be obtained at
a higher cost.

• Performance. Authentication should not take a long time or users will be annoyed.
• Frequency. We should not make users authenticate frequently. Frequent authentications

waste time and annoy the users.
All these properties must be present in the lower-level ways of performing authentication, e.g.
in a Password Authenticator (see next slide). A Password Authenticator needs tomake concrete
its Authentication Information (list of passwords) and its proof of authentication (a session)

A concrete pattern: Password-based authenticator

Subject Authenticator

request
* 1Authent

Password Session Password
List

11 1

<<create>>

Application Layer: Access control models
• Authorization. How do we describe

who is authorized to access specific
resources in a system? A list of
authorization rules describes who
has access to what and how.

• Role-Based Access Control (RBAC).
How do we assign rights to people
based on their functions or tasks?
Assign people to roles and give
rights to these roles so they can
perform their tasks.

• Multilevel Security. Users and data
are classified into levels

Access Matrix
Subject

id

ProtectionObject

id

* *Authorization_rule

Right

access_type

predicate

copy_flag

checkRights

Reference Monitor
• Authorization rules define who has access

to what and how. They must be enforced
when a process request a resource

• Each request for resources must be
intercepted and evaluated for authorized
access; this is the concept of Reference
Monitor

• An abstract concept, implemented as
memory access manager, file permission
checks, CORBA adapters, etc.

Abstract Reference Monitor

Authorization
Rules

 Reference
Monitor

F1
read F1 pi

Ui

if ∃ (Ui, read, F1)
then read F1;
else securityViolation

Role-Based Access Control

• Users are assigned roles according to
their functions and given the needed
rights (access types for specific objects)

• When users are assigned by
administrators, this is a mandatory model

• Can implement least privilege and
separation of duty policies

User

userID

addUser
removeUser

*

*

AuthorizationRule*

*

MemberOf

1

*

{Subset}

WorksOn

Role

roleID

addRole
removeRole
addUserToRole
removeUserFromRole

Session

createSession
endSession

Right

accessType

checkRights

*

ProtectionObject

objectID

addObject
removeObject

CompositeRole SimpleRole

CompositeObject SimpleObject*

*

11/27/19 36

XML firewall

• Controls input/output of XML applications
• Well-formed documents (schema as

reference)
• Harmful data (wrong type or length)
• Encryption/decryption
• Sign and verify signatures in documents

11/27/19 37

Description of standards
• Some standards, e.g., those for XML web services security,

are very complex and described in verbose documents (50-
100 pages each)

• By describing those standards as patterns we have made
them much easier to understand and apply

• We modeled most of the standards for XML web services
• The next slide describes the set of standards we modeled

and the following slide after it a specific standard

Web services standards

XML Encryption standard

Building secure systems
• Secure systems need to be built in a systematic way where security is an integral

part of the lifecycle, and the same applies to safety.
• The platform should match the type of application, and all compliance, safety

and security constraints should be defined at the application level, where their
semantics are understood and propagated to the lower levels.

• The lower levels must provide the assurance that the constraints are being
followed, i.e., they implement these constraints and enforce that there are no
ways to bypass them.

• Following these ideas, we developed a secure systems development
methodology, which considers all lifecycle stages and all architectural levels. We
expanded its architectural aspects, and recently expanded it with process
aspects. We are now extending it to CPSs. We use reference architectures as
guidelines.

What is a security methodology?

■ Methodology: systematic way of doing something
■ Security methodology:

systematic way of introducing security into a software system
during the development life-cycle

■ Advantages analogous to those of software engineering process
vs. ad-hoc development

■ Partial or comprehensive; covering early phases of the
development life-cycle especially important

■ Consists of two aspects/facets: security process (SP) and
conceptual security framework (CF)

■ Can be specific (e.g. Web services, CPS) or generic (distributed
systems)

ASE: a comprehensive security methodology for
distributed systems

■ Many methodologies exist
with different paradigms

■ Very important class is
methodologies that use
security patterns

■ ASE: a security methodology
using patterns and related
constructs designed
specifically for general
distributed systems

Major elements of CF: Threat
taxonomies/libraries

■ Threat taxonomies/libraries
consist of threat patterns,
which can be customized and
instantiated in different
architectural contexts to
define specific threats to a
system.

■ Allow developers to quickly
and efficiently consider a
range of relevant threats
during threat modeling.

Threat classes
Functionality
decomposition
layer

Relevant threat classes

User interaction Identity attacks, Passing illegal data, Remote information inference,
Repudiation,
Uncontrolled operations

Data / storage
management

Passing illegal data, Stored data attacks, Remote information
inference, Uncontrolled operations

Resource
management

Uncontrolled operations

Distribution
control

Identity attacks, Passing illegal data, Remote information inference,
Uncontrolled operations

Communication Network communication attacks, Network protocol attacks,
Repudiation

Addressing Network communication attacks, Network protocol attacks,
Repudiation

11/27/19 46

Secure software lifecycle

Security verification and testing

Requirements Analysis Design Implementation

Secure UCs Authorization rules in
conceptual model

Rule enforcement
through architecture

Language enforcement

Security test cases

Basic security principles for system design

• Security constraints must be defined at the highest layer, where their semantics
are clear, and propagated to the lower levels, which enforce them.

• All the layers of the architecture must be secure.
• We can define patterns at all levels. This allows a designer to make sure that all

levels are secured, and also makes easier propagating down the high-level
constraints.

• We must apply security in all development stages
• A two-dimensional approach: time and space

Functional
Classes

NFR
Classes

J2EE, .NET
Web Services
REST Services
code

Security/Reliability
COTS components

Secured system

...

Customers

ATMs,
Browsers

Brokers
Auditors

certificatesmessage
encryption

Internet
Web

Application
Server

Web
Servercertificates

IDS

firewalls

authorization
VPN

Databases

authorization
encryption

Deployment for secured financial institution

Reference Architecture (RA)
• A Reference Architecture (RA) is a generic software

architecture, based on one or more domains, with no
implementation aspects

• An RA is reusable, extendable, and configurable.
• It specifies the components of the system, their

individual functionalities and their mutual interaction.
• An RA can be considered as a compound pattern and

its components described as patterns.
• In addition to domain models, an RA may include a set

of use cases (UC), and a set of Roles (R) corresponding
to its stakeholders (actors).

Securing an RA
• We start from a list of use cases which describe the typical cloud uses

and their associated roles

• We analyze each use case looking for vulnerabilities and threats. This
implies checking each activity in the activity diagram of the use cases
to see how it can be attacked. This approach results in a systematic
enumeration of threats.

• We use lists of threats from repositories to confirm these threats and
to find possible further vulnerabilities and threats.

• These threats are expressed in the form of misuse patterns. We
developed some misuse patterns for Clouds.

• We apply policies to handle the threats and we identify security
patterns to realize the policies. There are some defenses that come
from best practices and others that handle specific threats. There are
also regulatory policies which are realized as security patterns.

IaaS

PaaS

SaaS

Reference Architecture

Cloud

Misuse patterns Security patterns

Threats
Vulnerabilities

Countermeasures

Security
Analysis

stopped by

threats
defenses

Security best practices

defenses

Threat enumeration and modeling

• In previous work we introduced an approach for threat enumeration
• This process is performed during the requirements and the design stages of the

software development cycle and analyzes each activity in the activity diagram of
a use case to see how it could be subverted by an attacker to reach her goals

• This analysis results in a set of threats and since the use cases are all the ways to
interact with a system we can enumerate threats systematically

• We then consider which policies can mitigate these threats and we realize the
policies with patterns; in fact, we incorporated this approach as part of a
systematic methodology to build secure systems

• This process requires developers to conjecture possible attacks to different assets
or parts of a system, to assess their impact and likelihood, and to determine how
they could potentially be stopped or mitigated.

• We use the reference architecture (RA) as a reference framework, i.e., each
threat is related to a specific component of the architecture

ID Threats Defense

T11 The cloud consumer is malicious and inserts

malicious code into the VMI

Authenticator - Authorizer

T21 An external attacker listens to the network to

obtain information about the VMI

Secure Channel

T22 VMI may be modified while in transit Secure Channel

T23 Disavows sending a VMI Security Logger/Auditor

T31 The IaaS administrator is malicious and collects

information within the VMI

Authenticator - Authorizer

T32 The IaaS disavows receiving a VMI Security Logger/Auditor

T33 Insert malicious code in the image Authenticator - Authorizer

T41 The IaaS administrator stores a malicious VMI Authorizer – Authorizer

Filter

Threat List vs. Defenses for a cloud

Partial
SRA for
Clouds

Misuse patterns

• A misuse pattern describes, from the point of view of an attacker, a generic
way of performing an attack that takes advantage of the specific
vulnerabilities of some environment or context

• A misuse is reading a list of credit card numbers, modifying a schedule,…
• Misuse patterns define the environment where the attack is performed,

countermeasures to stop it, and indicate where to find forensic
information in order to trace the attack once it happens

• This systematic and structured representation of attacks is important to
classify and unify them as well as to find countermeasures against them

• We describe this type of patterns as well as our security patterns using a
template based on the one used in the POSA book, which is commonly
used for architectural patterns as well as security patterns

Metamodel for security concepts

1

Application UseCase Activity*1..*1..

Asset
*

Threat
*

Attack Vulnerability
*1

realizes

* *
targetsThreat

Pattern

Attack
Pattern

Misuse
Pattern

1

1
realizes

1 1
encapsulates1

1

realizes

Security
Pattern (SP)

Compound SP Simple SP

SC
SSF

SP Family

ASP
*1.. 0..1

*1..

*
* *

*
*

1 1 exploits

*

* *1..

encapsulates

neutralizes

1

Security verification

• Once all iterations of the security implementation stage are completed, the
resulting software system must be carefully verified as to whether it really
does satisfy the security architecture specifications (threats).

• This is accomplished by considering misuse pattern realizations of each of
the threats found during the development phases, and performing
penetration testing on the software system.

• We can measure security by counting the threats that have been
neutralized by using patterns

• We can verify that a particular countermeasure has been implemented
correctly, and also determine whether that countermeasure is effective
against (corresponding) representative attacks.

Conclusions
• Security patterns are a useful tool to build secure architectures
• A strong system architecture can prevent the propagation of successful attacks to a part

of the system (segmentation and gate checking), we have applied accepted design
principles directly or through patterns

• We have written about 150 security patterns, we intend to unify patterns from other
authors

• They require appropriate methodologies to use them, good catalogs and tools
• They can handle security in a holistic way, necessary for complex systems
• Patterns are also valuable for evaluating existing systems and for teaching security

concepts
• Reference architectures can simplify secure application development or can be used to

build secure architectures that conform to some type of application, e.g. clouds

Conclusions II

• Patterns cannot prevent attacks that happen through code flaws but
can make their effect much less harmful; in any case, they can be
complemented with code analysis

• Patterns can be made more formal: Object Constraint Language (OCL)
• Patterns emphasize architectural aspects, keys to understand and

prevent most attacks.
• Patterns can lead to building strong systems, a more effective and

ethical approach than retaliation

References on security patterns and RAs
• E.B.Fernandez, “Security patterns in practice: Building secure architectures using

software patterns”, Wiley Series on Software Design Patterns, 2013.
• E. B.Fernandez, Nobukazu Yoshioka, Hironori Washizaki, and Joseph Yoder,

"Abstract security patterns for requirements specification and analysis of secure
systems'', Procs. of the WER 2014 conference, a track of the 17th Ibero-American
Conf. on Soft. Eng.(CIbSE 2014), Pucon, Chile, April 2014

• E.B.Fernandez, Raul Monge, and Keiko Hashizume, “Building a security reference
architecture for cloud systems”, Requirements Engineering. Doi: 10.1007/s00766-
014-0218-7, 2015

• E. B. Fernandez, Nobukazu Yoshioka, Hironori Washizaki and Madiha H. Syed,
Modeling and security in cloud ecosystems, Future Internet 2016, 8(2), 13;
doi:10.3390/fi8020013, (Special Issue Security in Cloud Computing and Big Data

• M. Schumacher, E. B.Fernandez, D. Hybertson, F. Buschmann, and P. Sommerlad,
Security Patterns: Integrating security and systems engineering", Wiley Series on
Software Design Patterns, 2006.

http://www.mdpi.com/search%3Fauthors=Eduardo%2520B.%2520Fernandez&orcid=
http://www.mdpi.com/search%3Fauthors=Nobukazu%2520Yoshioka&orcid=
http://www.mdpi.com/search%3Fauthors=Hironori%2520Washizaki&orcid=
http://www.mdpi.com/search%3Fauthors=Madiha%2520H.%2520Syed&orcid=
http://dx.doi.org/10.3390/fi8020013
http://www.mdpi.com/journal/futureinternet/special_issues/security_cloud_computing

References on methodology
• E. B. Fernandez, M.M. Larrondo-Petrie, T. Sorgente, and M. VanHilst, "A

methodology to develop secure systems using patterns", Chapter 5 in
"Integrating security and software engineering: Advances and future
vision", H. Mouratidis and P. Giorgini (Eds.), IDEA Press, 2006, 107-126.

• Anton Uzunov and E.B.Fernandez, “An Extensible Pattern-based Library and
Taxonomy of Security Threats for Distributed Systems”- Special Issue on
Security in Information Systems of the Journal of Computer Standards &
Interfaces. 2013. http://dx.doi.org/10.1016/j.csi.2013.12.008

• Anton Uzunov, E. B Fernandez, Katrina Falkner, “ASE: A Comprehensive
Pattern- Driven Security Methodology for Distributed Systems”, Journal of
Computer Standards & Interfaces , Vol. 41, September 2015, 112-137,

• Anton Uzunov, E. B Fernandez, Katrina Falkner, “Security solution frames
and security patterns for authorization in distributed, collaborative
systems”, Computers & Security, 55, 2015, 193-234, doi:
10.1016/j.cose.2015.08.003

http://dx.doi.org/10.1016/j.csi.2013.12.008

