
Nleak: Automatic Memory Leak Debugging in Node.js
Innovate in the Wild

Students: Canchen Li, Chenxi Zhang, Pranathi Alla, Pronoy Roy, Qingyang Shi, Wenting Yeh, Yizhou Liu
Faculty advisor: Hanan Hibshi
Sponsor: Max Dobler, Kripa Ravivarman, Pinda Ndaki, Adobe, Inc.

Memory leaks may cause a system to slow down or crash. If an 
attacker can intentionally trigger a memory leak, the attacker may be 
able to launch a denial-of-service attack or take advantage of other 
unexpected program behavior. JavaScript memory leaks are tricky 
and often time-consuming to identify and fix, as JavaScript is 
dynamically typed and leaks are fundamentally different from leaks in 
traditional C, C++, and Java programs. It is a daunting task even for 
experienced expert developers to effectively identify and fix memory 
leaks. Our team worked with Adobe to build NLeak, a memory 
detection tool to automate companies’ attempts to locate, diagnose, 
and rank JavaScript memory leaks in Node.js applications.

NLeak viewer is a tool built in React.js that allows you to visualize the 
heap snapshot growth of your application. To use it, simply go to 
https://nleak-viewer.vercel.app/ and upload your nleak_result.json file. 
A screenshot ofNLeak viewer is provided below.

• Work on support recursive rewriting and code instrumentation, so 
that NLeak can run on a full codebase folder instead of single file.

• Setup a use case for integrating NLeak to CI, and expose the 
NLeak result as API or hooks for data visibility. (e.g., Grafana, 
Github/Gitlab, etc)

• Expand the tool from Node.js to other JavaScript runtime 
environments such as Deno, Cloudflare workers.

Introduction Methodology System Design

Results

Future Work 

Scan QR code to view demo 
Once you've uploaded the file, NLeak viewer will generate a chart 
showing the growth of your heap snapshots over time. You'll also see 
a summary of the last heap snapshot's size, as well as the leak 
location with source map.

NLeak Viewer Screenshot

NLeak Memory Leak Detection Pipeline

NLeak System Design Sequence Diagram

NLeak adopts the core algorithm from BLeak [1] for memory leak 
identification. The algorithm takes a series of JavaScript runtime 
heap snapshots during idempotent operations in the guest 
application. Memory leaks are identified as heap objects gaining 
more outgoing references across the heap snapshots.
When leak-related objects are gathered, NLeak re-executes the 
guest application to gather the related JavaScript stack trace. An 
illustration of this process is provided below.

NLeak Execution Scheme

Clients only need to provide a configuration file along with their guest 
application for executing Nleak. NLeak executes the guest 
application as one of its child processes in inspection mode. 
Heapsnapshots are captured via the Chrome debugger protocol. 
Guest application rewrites are applied in the leak diagnosis phase to 
obtain the reference stack trace for possible memory leak objects. 
The rewrite makes object references traceable in the guest 
application's execution and is integrated into the system seamlessly 
with a customized module import and compile scheme.

[1] J. Vilk and E. D. Berger, ''BLeak: automatically debugging memory leaks in web applications," 
in Proceedings of the 39thACM SIGPLAN Conference on Programming Language Design and Implementation, 2018.


	Slide Number 1

