
Impact Oriented Programming Prototype
Innovate in the Wild

Students: Meesha Chauhan, Gerard O’Rourke, Samhita Vempatti, Palash Oswal, Yu-Hsin Wang
Faculty advisor: Gregory Kesden
Sponsor: Adam Cecchetti, Staris Labs

Background
Debugging helps identify and address vulnerabilities in code. 
Programmers inefficiently debug their own code by using print 
statements and debuggers. The lost time can be significantly 
reduced if the programmers can see the impact of their code in 
real time. Our team worked with Staris Labs to deliver a proof of 
concept to show the impact with various techniques, such as 
fuzzing and static analysis. We were able to verify the presence of 
known vulnerabilities in code.

Project Goal
Develop a prototype that showcases how a programmer can utilize
the tools such as fuzzing and static analysis to see the impacts.
Tools Used
AFL++, CodeChecker, ,CodeQL, Docker, Flask, GraphViz,
PostgreSQL, Rust, TreeSitter, VSCode. GDB, Clang/LLVM

We developed a VSCode extension that the user runs while 
developing C code. They select any C function (MUSL libc) and 
send it to a remote backend. The backend, a Flask server, is where 
the function is fuzzed and statically analyzed using various tools. 
The abstracted results are available to the user. The results help 
the user automate testing and debugging and better understand 
the impact of the code they write on the machine.

Our program can do the following for any C function within VSCode:

VSCode

Control flow 
analysis 

Dynamic 
fuzz testing

REPL based 
replays

Range 
testing

Dynamic 
debugging

Static 
analysis 

• VSCode Extension
Customizable extension that supports C language semantics 
and web based result explorer.

• HTTP API Backend with Tools
Portable Python based backend that abstracts the complex 
tooling infrastructure.

• C++ Harness Generators
Executable Binaries produced for REPL and Fuzzing purposes. 
These have support for complex types.

• Custom CodeQL Analyses
A full suite of static analysis of the code using the power of 
custom CodeQL queries.

• Automated Line by Line Debugging with Concolic 
Execution
Stepping through the function code line by line and 
demonstrating state of variables for a given parameter value.

Identification Of Known Vulnerabilities
We were able to verify the presence of known vulnerabilities in 
code, notably CVE-2020-28928 was observable in the Static 
Analysis view.
User Feedback
We have obtained feedback from several INI students with 
programming backgrounds and a professor for our product. User 
responses have been very positive.
Future Work
Our project has shown that Impact Oriented Programming (IoP) is 
possible from a technical perspective. The next stage is to see if 
there is a market for IoP as a product. Currently our prototype only 
supports C and has been tested with MUSL libc. Expanding 
Impact Oriented Programming to work with other languages is a 
potential area of future work.

Project Overview Architecture Capabilities

Solution Implementation Results & Future Work

Scan QR code to view demo 


	Slide Number 1

