ShadowMove: A Stealthy Lateral Movement Strategy

Jinpeng Wei
Associate Professor
Department of Software and Information Systems
College of Computing and Informatics
University of North Carolina at Charlotte
https://webpages.charlotte.edu/jwei8/
Advanced Persistent Threats (APTs) are Extremely Harmful

- Real world example: Equifax breach

- Features of lateral movement in APT attacks
 - Assume that a foothold within the target network is already established
 - Use the compromised systems as stepping stones to reach critical assets
How can an APT attacker move laterally?
Existing Lateral Movement Technique 1: Vulnerability Exploitation

- Idea: exploit vulnerabilities in network services (e.g., WannaCry exploited an SMB vulnerability)
- Limitations
 - Server must have an unpatched vulnerability
 - Exploitation easy to detect (intrusive to the server, by violating its integrity)
Existing Lateral Movement Technique

2: Credential Abuse

• Idea: harvest and abuse user credentials (e.g., passwords by Equifax breach)

• Limitations
 – Credentials are not easy to get: they may not be saved, they are often encrypted, or key loggers are easy to detect
 – Credentials alone may not be enough (e.g., two-factor authentication)
 – Abusing credentials requires new network connections, which can be detected as anomaly
Existing Lateral Movement Technique
3: Process Injection

• Idea: Inject application- and protocol-specific code into legitimate clients to reuse its connections (e.g., SSH-Jack)

• Limitations
 – Complex and hard to implement (application specific)
 – Intrusive to the client (i.e., by violating its integrity) and can be detected by existing defensive solutions (e.g., Windows Defender ATP)
ShadowMove: a Novel Attack Technique

• The idea: silently reuse existing and legitimate network connections to move laterally towards valuable targets in a compromised enterprise network
• Example: Employee Self-Service Application (e.g., using FTP to upload malware and WinRM to launch malware)
ShadowMove: a Novel Attack Technique

• The idea: silently reuse existing and legitimate network connections to move laterally towards valuable targets in a compromised enterprise network (e.g., FTP to upload malware, and WinRM to launch malware)
ShadowMove: a Novel Attack Technique

- The idea: silently reuse existing and legitimate network connections to move laterally towards valuable targets in a compromised enterprise network (e.g., FTP to upload malware, and WinRM to launch malware)
ShadowMove: a Novel Attack Technique

- The idea: silently *reuse existing and legitimate network connections* to move laterally towards valuable targets in a compromised enterprise network (e.g., FTP to upload malware, and WinRM to launch malware)
ShadowMove: a Novel Attack Technique

- The idea: silently reuse existing and legitimate network connections to move laterally towards valuable targets in a compromised enterprise network (e.g., FTP to upload malware, and WinRM to launch malware)
Case Study: Single Hop ShadowMove Over FTP

Compromised Host

ShadowMoveFTP

FTP Client

User testy

331 Please specify the password.

PASS 123456rty@@

230 Login successful.

CWD /files/

250 Directory successfully changed.

TYPE I

200 Switching to binary mode.

PASV

Entering Passive Mode (54,36,162,222,176,251)

STOR shadowmove.exe

Entering Passive Mode

Remote Host

FTP Server

Server Socket

Client Socket

Duplicated Socket

Duplicate socket

Inject packets to upload malware to FTP server

Normal user authentication

Duplicated Socket

Normal user authentication
ShadowMove among Network Nodes

• From foothold to valuable target buried in the network
• Based on a **global network view** learned over time
ShadowMove Makes APT Attacks Easier

• Traditional lateral movement techniques are **application-specific**
 — Vulnerability exploitation: case-by-case, server-specific, not scalable
 — Credential abuse: server-specific, not scalable
 — Process injection: case-by-case, not scalable

• ShadowMove is **general** and **scalable**: works for any server and any client, targeting protocols instead of applications

• ShadowMove has plenty of opportunities to thrive in enterprise computing environments:
 — A large number of protocols, most having public specifications
 • E.g., FTP, WinRM, Microsoft SQL, HTTP, AJP, MySQL SQL, MQTT, etc
 — Widespread automation (e.g., Passwordless SSH Login)
 — Weaker protection inside enterprise networks: traffic often not encrypted
Threat Model

• Attackers have established a foothold on a victim system under a normal user's privilege
 – Easy to satisfy: given the prevalence of malware infection, caused by spearphishing and drive-by downloads

• The attackers run malware to automatically move towards the critical asset(s)

• The victim process whose TCP connection is going to be hijacked is not aware of the malware process
ShadowMove Architecture

- **Peer Handler** (PID, Endpoints)
- **Socket Duplicator** (PID, Endpoints)
- **Connection Detector**
- **Net View Manager**
 - **Network View**
 - **Duplicated Socket Pool**
 - **L7 Protocol Detector**
- **Lateral Movement Plan Actuator**
 - **Protocol handler**
- **Lateral Movement Planner (LMP)** (Action Plan)
Connection Detector

- Periodically gets list of TCP connections
 - E.g. by calling GetTcpTable2 and GetTcp6Table2
- Identifies new connections
- Filters out the ones owned by a process that cannot be accessed
- Calls socket duplicator to duplicate the sockets for new connections

Detects newly created sockets suitable for duplication
Conventional Socket Duplication

- Official socket duplication requires cooperation of socket owner
- Example: Windows socket duplication

1. WSASocket and WSAConnect
2. Get process id
3. Call WSADuplicateSocket
4. Send WSAPROTOCOl_INFO
5. Call WSASocket
6. Use duplicated socket
7. Close socket
ShadowMove Socket Duplicator

- ShadowMove invokes Windows APIs in an unconventional way. Therefore, it does not require cooperation from the socket owner process.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>kernel/ntdll functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open the owner process with PROCESS_DUP_HANDLE</td>
<td>OpenProcess(PROCESS_DUP_HANDLE, , pid)</td>
</tr>
<tr>
<td>2</td>
<td>Foreach handle with type 0x24 (file)</td>
<td>NtQuerySystemInformation(SystemHandleInformation, ...)</td>
</tr>
<tr>
<td>3</td>
<td>Duplicate the handle</td>
<td>NtDuplicateObject</td>
</tr>
<tr>
<td>4</td>
<td>Retrieve its names</td>
<td>NtQueryObject(ObjectNameInformation)</td>
</tr>
<tr>
<td>5</td>
<td>Skip if the name is not \device\afd</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Obtain remote IP and remote port number</td>
<td>getpeername(handle, ...)</td>
</tr>
<tr>
<td>7</td>
<td>Skip if remote IP and port do not match the input parameters</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Call WSADuplicateSocketW to get a special WSAPROTOCOL_INFO structure</td>
<td>WSADuplicateSocketW(handle, ...)</td>
</tr>
<tr>
<td>9</td>
<td>Create a duplicate socket</td>
<td>WSACreateSocketW(WSAPROTOCOL_INFO, ...)</td>
</tr>
<tr>
<td>10</td>
<td>Use the socket</td>
<td>recv(), send()</td>
</tr>
</tbody>
</table>
Peer Handler

Constructs a global view of the compromised network by synchronizing its current view with neighboring ShadowMove instances

- Receives network views from neighboring nodes
 - Peeks from duplicated sockets
 - Waits for synchronization signal
- Sends synchronization signal periodically to its predecessor/successor nodes
 - Sends its own network views
Lateral Movement Planner

- Formulates the next lateral movement action plan based on
 - Current network view
 - History of action plans performed by all ShadowMove instances
- Optimizes for effectiveness and stealth
- Logic programming based

An action plan describes the action that must be performed on a specific end point
Lateral Movement Planner

Prior knowledge:
- Capability(FTP, Upload)
- Capability(FTP, Download)
- Capability(WinRM, Execute)

Logic Programming predicates

commitExecuteOperation(X, Y) :-
 connected(X, Y, Z),
 capability(Z, execute),
 origin(I),
 remoteOperation(I, Y, upload, _R),
 committed(_K, Y, upload).

remoteOperation(X, Y, Action, Route):-
 connected(X, Z, Service),
 capability(Service, Action),
 remoteOperation(Z, Y, Action, _R),
 Route=[X| _R].

Plan

Use WinRM connection (④) to launch malware on the Target.
Lateral Movement Plan Actuator

- Contains a set of Protocol Handlers
 - Application protocol specific
 - FTP, TDS (MS SQL), and WinRM
 - Performs different operations
 - Upload, Download, or Execute

Creates protocol-specific queries to carry out lateral movement plans
ShadowMove Implementation

• We implement a prototype of the ShadowMove design on Windows in 2,501 lines of C/C++ code
 – We also have a simpler prototype for Ubuntu Linux

• The lateral movement planner is based on SWI-Prolog
ShadowMove PoC Leveraging WinRM (Windows Remote Management)
Why are ShadowMove Attacks Possible?

– The conflicting requirements between process isolation and resource sharing in commodity OS
 • allows the attack process to duplicate (share) sockets belonging to legitimate client processes.

– A lack of built-in message origin integrity validation in many networking protocols
 • allows malicious packets in existing connections that cannot be differentiated from legitimate packets.
Evaluation of the Stealthiness

- Not detected by off-the-shelf defense solutions

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Version</th>
<th>Update time</th>
<th>FTP/MSSql/WinRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV</td>
<td>McAfee</td>
<td>16.0</td>
<td>3 Feb 2019</td>
<td>N/N/N</td>
</tr>
<tr>
<td>AV</td>
<td>Norton</td>
<td>22.16.2.22</td>
<td>3 Feb 2019</td>
<td>N/N/N</td>
</tr>
<tr>
<td>AV</td>
<td>Webroot</td>
<td>9.0.24.37</td>
<td>3 Feb 2019</td>
<td>N/N/N</td>
</tr>
<tr>
<td>AV</td>
<td>Bitdefender</td>
<td>6.6.7.106</td>
<td>3 Feb 2019</td>
<td>N/N/N</td>
</tr>
<tr>
<td>AV</td>
<td>Windows Defender</td>
<td>4.18.1901.7</td>
<td>3 Feb 2019</td>
<td>N/N/N</td>
</tr>
<tr>
<td>NIDS</td>
<td>Snort (Windows and Linux)</td>
<td>2.9.12</td>
<td>7 Feb 2019</td>
<td>N/N/N</td>
</tr>
<tr>
<td>HIDS</td>
<td>OSSEC (Linux)</td>
<td>3.4.0</td>
<td>12 Oct 2019</td>
<td>N/--/--</td>
</tr>
<tr>
<td>HIDS</td>
<td>Osquery (Linux)</td>
<td>4.0.2</td>
<td>24 Oct 2019</td>
<td>N/--/--</td>
</tr>
<tr>
<td>HIDS</td>
<td>Wazuh (Linux)</td>
<td>3.10.2</td>
<td>24 Oct 2019</td>
<td>N/--/--</td>
</tr>
<tr>
<td>EDR</td>
<td>Cisco AMP</td>
<td>6.1.5.10729</td>
<td>14 Jun 2018</td>
<td>N/N/N</td>
</tr>
<tr>
<td>EDR</td>
<td>CrowdStrike Falcon Prevent</td>
<td>4.20.8305.0</td>
<td>11 Feb 2019</td>
<td>N/N/N</td>
</tr>
</tbody>
</table>
Limitations of the Current ShadowMove Prototype

• It cannot hijack connections for which user-level encryption is applied to the payload

• It may not be able to get information such as the shellID in WinRM attack from the receiving buffer if it misses the authentication phase

• Our design of ShadowMove on Linux relies on a small amount of code injection
Conclusion

• We present the ShadowMove strategy that allows APT attackers to make stealthy lateral movements within an enterprise network.
• ShadowMove leverages existing benign network connections and does not require any elevated privilege, new connections, extra authentication, or process injection.
• We developed a prototype of ShadowMove for modern versions of Windows and Linux OSes, which successfully abuses three common enterprise protocols (i.e., FTP, Microsoft SQL, and WinRM).
• We also experimentally confirm that our prototype implementation is undetectable by state-of-the-art antivirus products, IDSes (such as Snort), and Endpoint Detection and Response systems.
Acknowledgement

Bei-Tseng Chu
UNC Charlotte

Qingyang Wang
LSU

Amir Niakanlahiji
Microsoft

Md Rabbi Alam
UNC Charlotte

Questions?