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Literature Background



Traditional Methods for Detecting Security Vulnerabilities

● Static Analysis
○ Pre-written set of rules
○ Does not execute code
○ Prone to false positives

● Dynamic Analysis
○ Unit Tests
○ Written by programmer
○ Executes code
○ Vulnerabilities must be anticipated



Deep Learning Natural Language Processing for Code

● Very good at finding patterns in text
● Previous Work on Code

○ Karpathy et al.(2015)
○ Lachaux et al.(2020)
○ Rozerie et al.(2021)
○ OpenAI Codex(2021)



Software Vulnerability Detection with DL-NLP



Objectives

● General
○ Warn coders of security vulnerabilities in C++/Java
○ Specific Line

● Technical Details
○ State of the Art Transformer Language Model(DOBF)
○ Pretraining on C++/Java

■ Open Source Github Projects
○ Custom tokenizer using clang python library(C++)
○ function-wise evaluation



In Summary

● 76% Chance of CWE-476
● Line 3 in func1
● NULL Pointer Dereference
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Pre-Training Intuition

Source: Devlin et. al (2019)



Pre-Training & Custom Tokenization

Source: Roziere et. al (2021)



Architecture Diagram



void func()
{

switch(6)
{
case 6:
{

HCRYPTPROV hCryptProv;
HCRYPTHASH hHash;
FILE *pFile = NULL;
char 

password[PASSWORD_INPUT_SIZE];
UCHAR savedHash[SHA1_SUM_SIZE], 

calcHash[SHA1_SUM_SIZE];
DWORD hashSize;
char *replace;
size_t i;
pFile = fopen("password.txt", "r");
if (pFile == NULL)
{

exit(1);
}

...

BERT CWE 328: Reversible One-Way Hash

Detection Results (C & C++)

Detection Metrics(Very Good)
SARD: 93%
Draper VDISC: 98% MultiClass(5)
(https://osf.io/d45bw/)



Description Generation with Google’s T5 Architecture



Description Generation with Google’s T5 Architecture



void func()
{

switch(6)
{
case 6:
{

HCRYPTPROV hCryptProv;
HCRYPTHASH hHash;
FILE *pFile = NULL;
char 

password[PASSWORD_INPUT_SIZE];
UCHAR savedHash[SHA1_SUM_SIZE], 

calcHash[SHA1_SUM_SIZE];
DWORD hashSize;
char *replace;
size_t i;
pFile = fopen("password.txt", "r");
if (pFile == NULL)
{

exit(1);
}

...

T5 FLAW: Use a reversible hash (SHA1)
Flaw Located ~line 24

Generation Results: Actual Output from Model

Generation Metrics(Very Good)
Rouge: 0.5942
Bleu: 0.4718




