
Automated Software Vulnerability Detection with 
Deep Learning for Natural Language Processing

Noah Ziems (Research Scientist)
Shaoen Wu (Endowed Chair Professor)

School of Information Technology
Illinois State University



Literature Background



Traditional Methods for Detecting Security Vulnerabilities

● Static Analysis
○ Pre-written set of rules
○ Does not execute code
○ Prone to false positives

● Dynamic Analysis
○ Unit Tests
○ Written by programmer
○ Executes code
○ Vulnerabilities must be anticipated



Deep Learning Natural Language Processing for Code

● Very good at finding patterns in text
● Previous Work on Code

○ Karpathy et al.(2015)
○ Lachaux et al.(2020)
○ Rozerie et al.(2021)
○ OpenAI Codex(2021)



Software Vulnerability Detection with DL-NLP



Objectives

● General
○ Warn coders of security vulnerabilities in C++/Java
○ Specific Line

● Technical Details
○ State of the Art Transformer Language Model(DOBF)
○ Pretraining on C++/Java

■ Open Source Github Projects
○ Custom tokenizer using clang python library(C++)
○ function-wise evaluation



In Summary

● 76% Chance of CWE-476
● Line 3 in func1
● NULL Pointer Dereference

Real Time

Programmer 
Fixes



Dataset

NVD / SARD
(hosted by NIST)

Input File

Text 
preprocessing 

Formatted 
Texts

Training 
flow

Inference flow

(Customized 
Tool)

Vulnerability 
Type & Line

NLP based Deep Learning 
Inference Model
(Transformer)



Pre-Training Intuition

Source: Devlin et. al (2019)



Pre-Training & Custom Tokenization

Source: Roziere et. al (2021)



Architecture Diagram



void func()
{

switch(6)
{
case 6:
{

HCRYPTPROV hCryptProv;
HCRYPTHASH hHash;
FILE *pFile = NULL;
char 

password[PASSWORD_INPUT_SIZE];
UCHAR savedHash[SHA1_SUM_SIZE], 

calcHash[SHA1_SUM_SIZE];
DWORD hashSize;
char *replace;
size_t i;
pFile = fopen("password.txt", "r");
if (pFile == NULL)
{

exit(1);
}

...

BERT CWE 328: Reversible One-Way Hash

Detection Results (C & C++)

Detection Metrics(Very Good)
SARD: 93%
Draper VDISC: 98% MultiClass(5)
(https://osf.io/d45bw/)



Description Generation with Google’s T5 Architecture



Description Generation with Google’s T5 Architecture



void func()
{

switch(6)
{
case 6:
{

HCRYPTPROV hCryptProv;
HCRYPTHASH hHash;
FILE *pFile = NULL;
char 

password[PASSWORD_INPUT_SIZE];
UCHAR savedHash[SHA1_SUM_SIZE], 

calcHash[SHA1_SUM_SIZE];
DWORD hashSize;
char *replace;
size_t i;
pFile = fopen("password.txt", "r");
if (pFile == NULL)
{

exit(1);
}

...

T5 FLAW: Use a reversible hash (SHA1)
Flaw Located ~line 24

Generation Results: Actual Output from Model

Generation Metrics(Very Good)
Rouge: 0.5942
Bleu: 0.4718




