SARR: A Cybersecurity Metrics and Quantification Framework

Shouhuai Xu, PhD Gallogly Chair Professor in Cybersecurity Founding Director, Laboratory for Cybersecurity Dynamics Department of Computer Science University of Colorado Colorado Springs <u>https://xu-lab.org/</u>

10/6/2021 @ CAE Forum

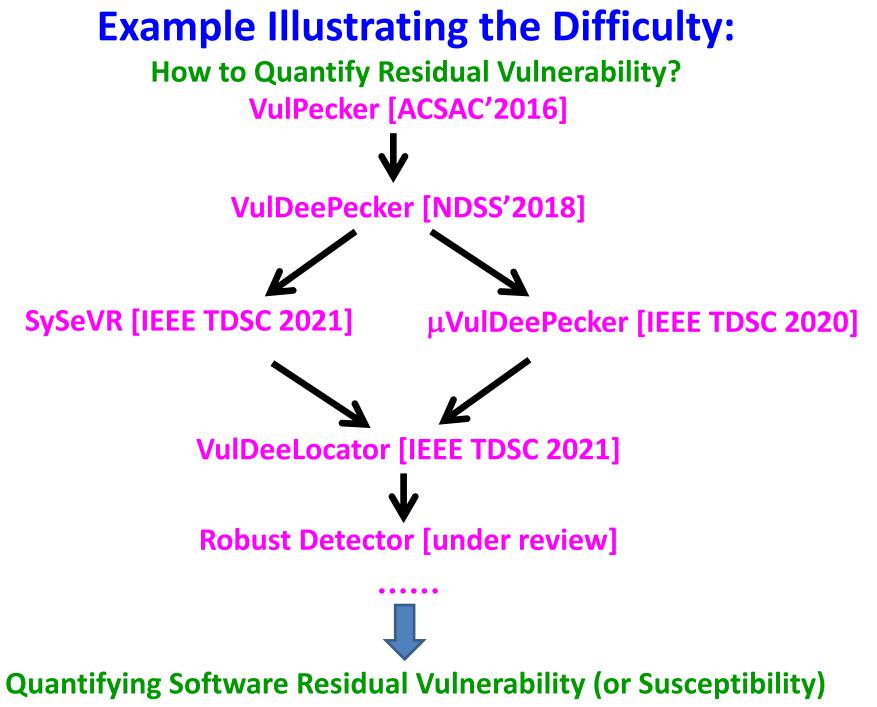
Acknowledgements

This research is not possible without

- **my** mentors for moral support and philosophic advices
- my many collaborators and students for their contributions
- **u** support from funding agencies

Outline

- **The Cybersecurity Metrics and Quantification problem**
- **The SARR Framework**
- **Galaxies** Status Quo
- **G** Future Research Directions


A Simple, But Ambitious Question

which I have been thinking for years

- We have many terms/concepts/notions/"buzzwords":
 - Security
 - Dependability
 - Survivability
 - Resilience
 - Agility
 - Trustworthiness
 - Privacy
- Q: What is the "structure/relation" between them that can be leveraged to unify them into a single framework?
 - Easy to understand the question, but hard to answer
- Observation: Cannot tackle it without addressing a fundamental problem, which is ...

The Cybersecurity Metrics (and Quantification) Problem

- □ ...perhaps does not need introduction other than
 - mentioning that it has been on multiple Hard Problem Lists
 - IUS INFOSEC Research Council 2007
 - US NST Council 2011]
 - SoS Lablets 2015

Why Is Cybersecurity Metris So Hard? [NSF SaTC 2019 PI Meeting, led by Xu and Trivedi]

- 1. Systems security is about emergent properties (system vs. components)
- 2. Hard to precisely define what we want
- 3. Hard to measure well-defined, useful metrics
- 4. Hard to parameterize/validate models
- 5. Walls between sub-disciplines (silos)
- 6. Technical-organizational misaligned objectives
- 7. Hard to develop metrics that are reproducible
- 8. Deal with unknown and future
 - (vulnorabilitios attacks)

- 9. High dimensionality
- **10. Context-dependence**
- **11.System complexity**
- 12. Hard to completely specify threat models
- 13. Hard to relate metrics to threat models
- 14. Hard to relate vulnerability,
 - exploitability & attack metrics
- 15. Hard to do experiments at scale
- 16. Hard to translate intuitive
 - metrics to precise ones

17 Hard to got datacate

This talk presents a systematic approach to overcoming these barriers

- **The Cybersecurity Metrics and Quantification problem**
- **The SARR Framework**
 - Inspired by, and integral to, the Cybersecurity Dynamics approach
- **Status Quo**
- **Future Research Directions**

The Cybersecurity Dynamics Approach [Xu2014, Xu2019, Xu2020]

- A systematic approach to modeling, quantifying, and analyzing
- cybersecurity from a holistic perspective.
- **Using graph structures to describe attack-defense interactions.**
- **Using parameters to capture attack and defense capabilities,**
 - human and software vulnerabilities, etc.
- **Using evolution of global cybersecurity state to describe the**
 - outcome of attacker-defender-user interactions.

How Is It Different from Others?

Dynamics-centric

Paradigm shift: introducing time into (threat) models

☆ Time-independent models → Time-dependent models

Quantification-driven

Quantification isn't an add-on feature but built-in

A Quantification starts with metrics

Mathematical Abstractions at Nutshell

Using appropriate mathematical representations

- Network dynamics G(t)
- Vulnerability dynamics B(t)
- Attack dynamics A(t): Dynamic threat models

Defense dynamics D(t)

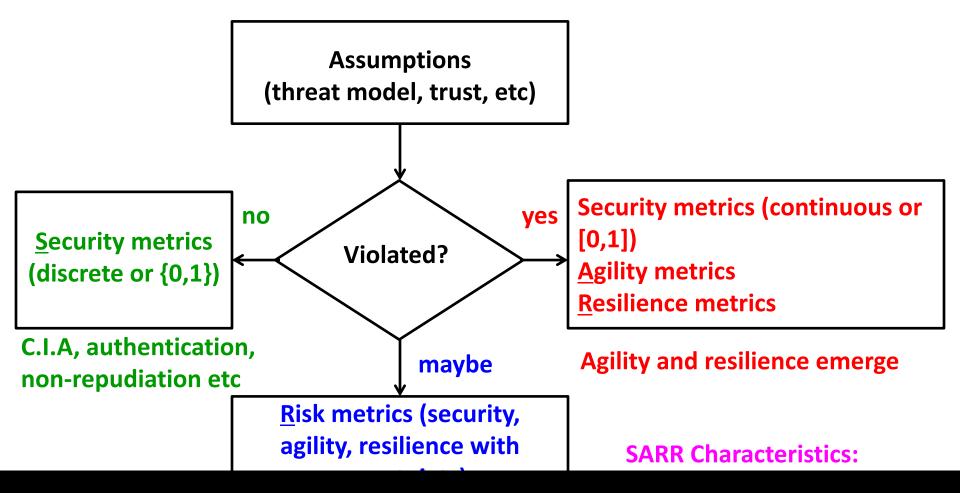
Security state metrics $M = \{m_i\} : m_i(t) = \mathcal{F}_i(G(t), B(t), A(t), D(t))$

Example application

Compare the effectiveness of architectures and/or mechanisms

I will not get into any of these technical details, which are indeed involved/challenging but are not the focus of the present talk

Terminology Used in This Talk


Levels of abstractions are necessary to cope with cybersecurity

- Networks: broadly defined to include cyberspace, enterprise networks, infrastructure, cyber-physical-human systems
- Horizontal view: Network vs. Devices (Computers)
- Vertical view: Network vs. Components (e.g., hardware, software like OS and IDS, data) vs. Building-Blocks (e.g., TLS)
 Design vs. Operation (a huge gap)
- Design phase: mostly dealing with building-blocks and components, sometimes with rigorous analysis (e.g., crypto)
- Operation phase: dealing with networks and devices;
 rigorous analysis is rare

Terminology (cont.)

- **Cybersecurity Properties vs. Security Properties**
 - Cybersecurity Properties: broadly defined to include security metrics, agility metrics, resilience metrics, and risk metrics
 - To Do: extension to accommodate dependability, survivability, trustworthiness, privacy
 - Security Properties: narrowly defined to correspond to standard C.I.A., authentication, non-repudiation, etc.
- Metric: A function mapping from a set of objects to a set of value with a certain scale (e.g., {0, 1} or [0, 1]) to reflect cybersecurity properties of the objects
 - **Cybersecurity Metrics (broader) vs. Security Metrics (narrower)**

SARR Overview

A next step: Extend it to accommodate dependability (much covered

already), survivability (maybe done already), trustworthiness (nothing

but conditional probability?), and privacy

Assumptions

- Assumptions associated with the design phase
 - The ones made in the system model, such as: the environment, the communication channel (e.g., private channel vs. authenticated private channel)
 - The ones made in the threat model, such as: chosen-ciphertext attack, adversarial example attack
 - The ones made regarding trust, such as: semi-honest participants
- Assumptions associated with the operation phase
 - The ones "revising or amending" threat model, such as: sidechannel capable or not, bounded compromises (1/3 in BFT)

Metrics When Assumptions Not Violated

- **Security properties are often discrete or binary, namely {0,1}**
 - Often (rigorously) analyzed by designers
 - Often dealing with building-blocks and sometime components, rarely dealing with networks and devices; the latter is often left as "practitioner's problem"
- Metrics associated with the design phase
 - Properties: C.I.A., authentication, non-repudiation, etc.
 - Need precise statement: "property of p holds in what system model against what attacks"
- Metrics associated with the operation phase
 - Service response time and throughput, etc

Metrics When Assumptions Violated

- **To what degrees assumptions are violated (with certainty)?**
- **To what degrees security properties are compromised?**
- Agility and resilience come to play
 - Agility: how fast defender reacts to changes (e.g., detecting attacks, responding to attacks)
 - Resilience: degrees of networks/devices/components/buildingblocks bouncing back from compromised security properties and violated assumptions; bounceability threshold
- Primarily applicable to the operation phase but having not been systematically investigated: security-by-design (investigated more) vs. agility-by-design vs. resilience-by-design (little understood)

Metrics When Assumptions May Be Violated

- **Gomewhere in between the two ends of the two spectrum**
 - mentioned above: assumptions certainly not violated vs. violated
- Uncertainty comes to play
- □ What is degree of certainty assumptions are violated?
- □ What is degree of certainty security properties are compromised?
- □ What is degree of certainty an alert/anomaly is an attack?
- □ What is degree of certainty software contains 0-day vulnerability?

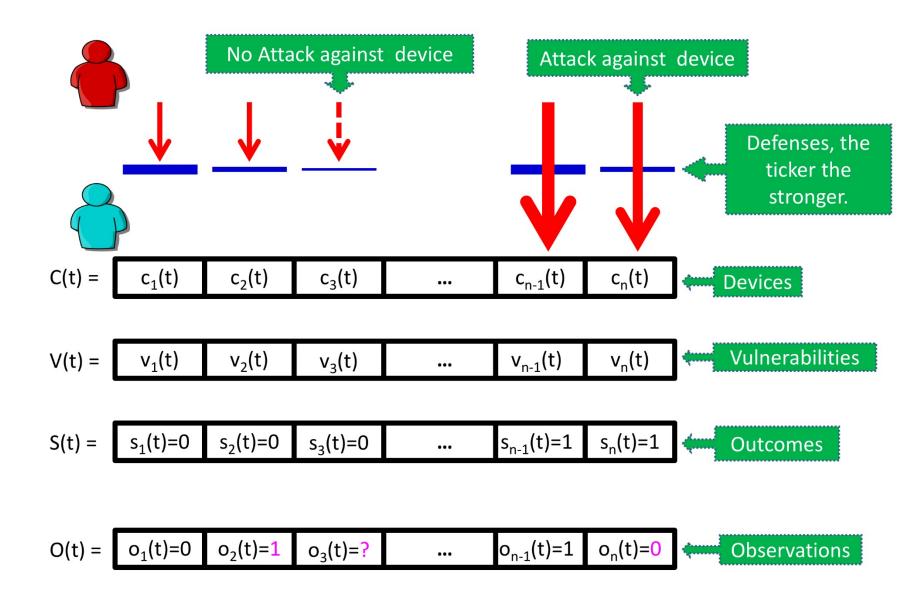
Observation 1: Uncertainty is inherent to cybersecurity, so is risk.

Outline

- **The Cybersecurity Metrics and Quantification problem**
- **The SARR Framework**
 - Inspired by, and integral to, the Cybersecurity Dynamics approach
- Status Quo
- **G** Future Research Directions

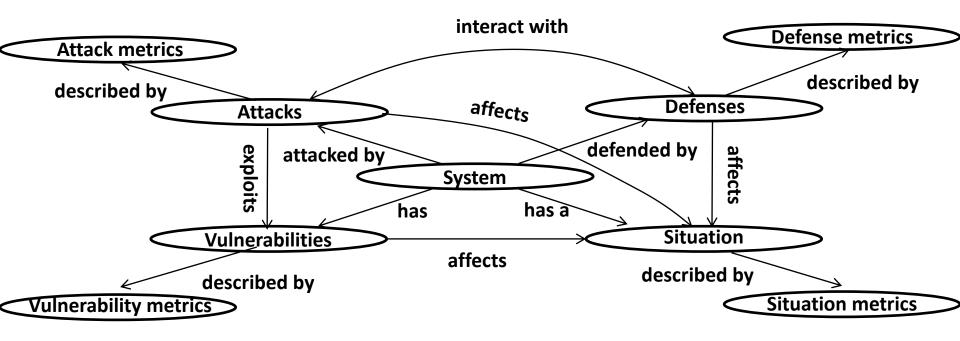
Assumptions

- Often made informally (exception: crypto)
- Often made implicitly
 - E.g., secrecy of cryptographic key \rightarrow "cryptographic security


property \neq cybersecurity property" \rightarrow putting trustworthiness

- of digital signatures or non-repudiation in question
- ❑ May be inadequate / incomplete
 - ✤ E.g., chosen-plaintext attack → chosen-ciphertext attack
 - **\therefore** E.g., assuming away side-channel attacks \rightarrow considering them

Observation 2: We must explicitly and precisely articulate assumptions


Security Metrics

via the Cybersecurity Dynamics approach [Pendleton2016]

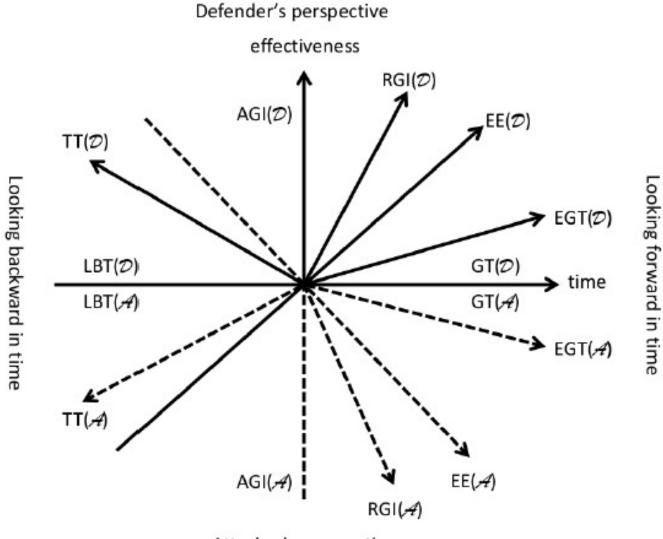
Security Metrics


via the Cybersecurity Dynamics approach [Pendleton2016]

Security metrics = vulnerability metrics ∪ defense metrics ∪ attack metrics ∪ situation metrics

Security Metrics

via the Cybersecurity Dynamics approach [Pendleton2016]



Observation 3: Our understanding of what should be measured is

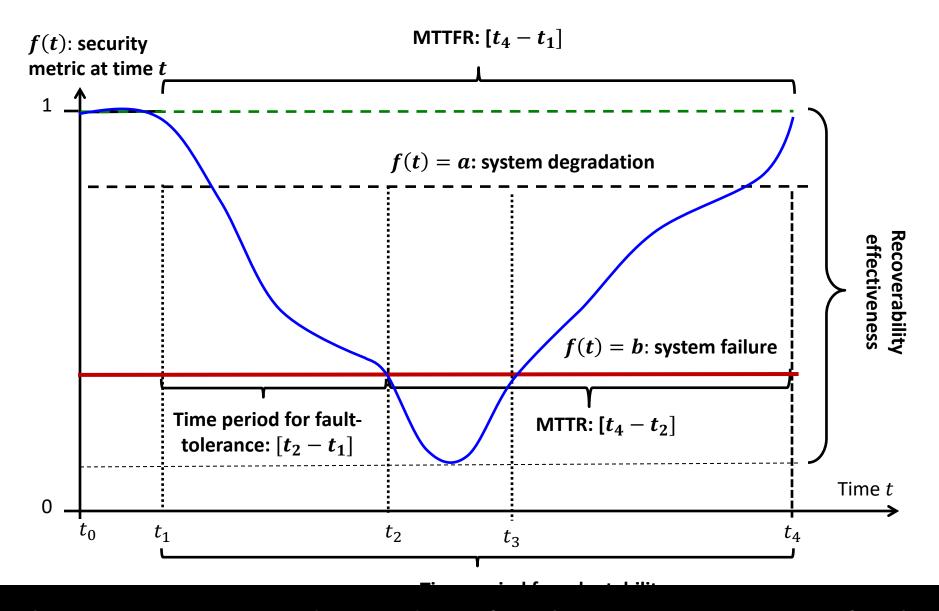
superficial (despite the many metrics)

Gaps in Cybersecurity Metrics via the Cybersecurity Dynamics approach [Pendleton2016] What we can do now What need to be done **Quantify building-block properties Quantify holistic system properties** What can be measured U What must be measured **No metrics curriculum** Metrics curriculum **u**"1 + 1 + 1 = ?" in the current partnership? Government & industry & academia: 1+1+1>3 **Most security papers offer no metrics Each security paper has clearly defined metrics** Ad hoc definitions of metrics Clear understanding of metrics (e.g., additivity?) **Uncertainty largely ignored Theory of uncertainty quantification No research community** A research community

Agility Metrics via the Cybersecurity Dynamics approach [Mireles2019]

Attacker's perspective

Agility Metrics via the Cybersecurity Dynamics approach [Mireles2019]



Insights drawn from case study (by applying agility metrics):

- Snort is responsive to attacks by timely evolving its defense, but attacks also evolve (i.e., arm race in attack-defense interactions)
- Snort has a lower agility in response to manual attacks than automatic attacks

Observation 4: Our understanding of agility metrics is superficial

Resilience Metrics [Cho2019]

Observation 4: Our understanding of resilience metrics is superficial

Risk Metrics

- Widely used formula (originally proposed to deal with hazards)
 risk = threat × vulnerability × consequence
- Having been "borrowed" to deal with cybersecurity risks, without challenging its applicability
- Not applicable to cybersecurity in general (see references in paper)
 - Do not consider dependence, interdependence, cascading failures, or emergent properties
 - Do not consider the time dimension (or dynamics), by oversimplifying the problem
- **The Cybersecurity Dynamics approach aims to overcome them**

Observation 5: Our understanding of risk metrics is superficial

Outline

- **The Cybersecurity Metrics and Quantification problem**
- **The SARR Framework**
 - Inspired by, and integral to, the Cybersecurity Dynamics approach
- **Status Quo**
- Future Research Directions

(1) Taming Cybersecurity Assumptions

The ideal case

- Assumptions are stated explicitly and precisely
- Assumptions are independent of each other
- Assumptions made at design phase are satisfied at operation
- □ Hard to achieve, but have to do it!
- **Alternatives:**
 - Characterizing (inter)dependence between assumptions
 - Example: the authenticated private channel assumption depends on the assumption that communication end parties are not compromised, which may further depend on other assumptions (and may even lead to circular assumptions)

(2) Bridging Design vs. Operation Gaps

- **The gaps are incurred by**
 - Multiple levels of abstractions: design often deals with building-blocks and components (low levels of abstractions) vs.
 operation often deals with networks and devices (high levels)
 - Speak different languages: "English vs. French" problem
 - Designers assume assumptions will not be violated, but defenders deal with the situations where they are violated
 - Designers may not tell (or care) the operation-phase implications of assumptions made at the design phase

(3) Identifying Metrics That Must Be Measured

- **We don't know what metrics we must measure (despite efforts)**
- Maybe a useful approach, using medical science as analogy
 - Metrics for building-block or "cell" level cybersecurity

properties \rightarrow "tissue" level cybersecurity properties \rightarrow "organ"

level cybersecurity properties \rightarrow "human body" level

cybersecurity properties

Emergent property would be reflected by metrics

(4) How Can We Tell Good vs. Poor Metrics?

- Defining metrics are not hard; defining "good" metrics are
 - Analogy: good security definition vs. poor security

definition in cryptography

- **But what are "good" metrics? According to what criteria?**
- **How to approach the problem?**
- **Conduct case studies for some killer applications (e.g., cyber**

defense command-and-control, quantitative cybersecurity

management); need quality data for case studies

(5) Fostering a Research Community

SciSec and HotSoS are perfect homes for this community

Grass roots" approach: Each paper with explicitly and precisely

defined assumptions, metrics, and quantitative statements on the

progress made by the paper (e.g., security improvement)

Rather than: a new attack defeats a defense, or a new defense

defeats an attack, without quantitative statements

(6) Developing a Science of Measurement

- Given well-defined cybersecurity metrics, one would think their
 - measurement would be trivial
- May be true sometimes
- **\Box** But can be extremely challenging \rightarrow need principled solutions
 - E.g., inferring cybersecurity metrics in the absence of groundtruth
 - Analogy: how is light speed or gravity or time precisely measured in Physics?

Takeaway

Cybersecurity Metrics and Quantification is one of the most

fundamental problems to work on (in any context)!

- Substantial progresses can be made
- Cybersecurity Dynamics is promising approach

What are the other approaches?

□ I plan to create materials for "Cybersecurity Metrics" course

Yes, we know how hard the problem is, but

Wir müssen wissen, wir werden wissen." ("We must know. We will know.")

— David Hilbert