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Overview

• Usage of machine learning in cyber-physical power 
systems

• Security of machine learning algorithms
• Adversarial attacks
• Vulnerabilities in machine learning algorithms
• Attack models
• Protection Strategies
• Conclusion



Cyber-physical Power 
Systems (CPPS)

• Contemporary power system architectures 
are cyber-physical in nature.

• These architectures contain 3 layers:
• Computing: servers, computer
• Data acquisition: sensors, phasor 

measurement units
• Physical [1]

• CPPS help transform how we interact with 
power systems, making them more 
connected and observable.  
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Machine 
learning (ML) in 
CPPS

• Application of ML in CPPS
• Electric vehicle power predictions
• Energy trading in distribution 

systems.
• Optimal scheduling for battery 

swapping stations
• High-performance solar cell 

creation
• Performance estimation and 

monitoring
• Monitoring energy consumption in 

smart homes

• ML makes modern CPPS intelligent, 
efficient, optimal, faster

• ML Pipeline: Input, Pre-process, Model, 
Output



ML Security
• According to NIST, there are multiple Targets of Attack 

(TA) in an ML pipeline, for CPPS [2]:
• Input domain: Malicious tampering with input 

sensor data or sensor devices.
• Data Pre-processing: Manipulating collected 

datasets and maliciously altering them before they 
get fed to the ML model.

• ML model: Poisoning the model by creating 
adversarial examples of data to make 
misclassifications. Can be in both training and 
testing.

• Output domain: Maliciously tampering with output 
devices, screens to display incorrect 
results/predictions. 
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Adversarial 
Attacks

• Cyber attacks on ML pipelines that aim 
to manipulate data and exploit model 
sensitivities to affect ML performance.

• Goal: Trigger misclassification, 
mispredictions, confidence reduction, 
attack model/data

• In CPPS, adversarial attacks can be 
detrimental as they can put the public 
and the environment at risk.



Adversarial Attack 
Examples

• Data Access attacks
• Data/Model poisoning
• Evasion attacks
• Oracle attacks



Vulnerabilities in 
ML algorithms

• The four main TAs in an 
ML pipeline is:
• Input domain
• Data pre-processing
• ML model

• Training Phase
• Testing Phase

• Output domain



Input Domain

• Targets: Transformers, temperature sensors, load leveling 
sensors, etc.

• Common attacks:
• False data injection: 

• Malicious, yet believable, samples are introduced into 
data to make ML classifier malfunction.

• Optimized, making them difficult to detect. 
• Data Manipulation:

• Manipulating the existing training data/labels to 
corrupt ML classification performance.

• Difficult to protect against due to the innate nature of 
manipulation.

• Physical device tampering



Input Domain

• Targets: Transformers, temperature sensors, load leveling 
sensors, etc.

• Common attacks:
• False data injection: 

• Malicious, yet believable, samples are introduced into 
data to make ML classifier malfunction.

• Optimized, making them difficult to detect. 
• Data Manipulation:

• Manipulating the existing training data/labels to 
corrupt ML classification performance.

• Difficult to protect against due to the innate nature of 
manipulation.

• Physical device tampering



Input Domain

• Targets: Transformers, temperature sensors, load leveling 
sensors, etc.

• Common attacks:
• False data injection: 

• Malicious, yet believable, samples are introduced into 
data to make ML classifier malfunction.

• Optimized, making them difficult to detect. 
• Data Manipulation:

• Manipulating the existing training data/labels to 
corrupt ML classification performance.

• Difficult to protect against due to the innate nature of 
manipulation.

• Physical device tampering



Input Domain

• Targets: Transformers, temperature sensors, load leveling 
sensors, etc.

• Common attacks:
• False data injection: 

• Malicious, yet believable, samples are introduced into 
data to make ML classifier malfunction.

• Optimized, making them difficult to detect. 
• Data Manipulation:

• Manipulating the existing training data/labels to 
corrupt ML classification performance.

• Difficult to protect against due to the innate nature of 
manipulation.

• Physical device tampering



Data Pre-processing

• Aggregated data from sensors must be pre-processed before 
continuing.

• Pre-processing techniques: noise removal, frequency-time 
analysis, dimensionality reduction, sampling, and feature 
extraction.

• Attacks:
• Noise manipulation: Manipulate noise removal 

algorithms to add more noise to the data.
• Feature extraction: Introduce malicious magnitudes in 

data parameters to degrade feature extraction algorithms.
• Visual data tampering: Data captured through CPPS 

network cameras can be modified through image scaling 
attacks. 
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ML Models – Training Phase

• Training phase attacks are geared to influence the training data or model. 
Most influential TA. 

• Poisoning attacks:
• Data injection: The adversary has access to the data. Optimized 

adversarial inputs are introduced into the original data to trigger 
misclassifications. 

• Data manipulation: The adversary has access to the data.  They 
poison the training data by flipping the input data (Input 
manipulation), or labels (Label manipulation)

• Logic Corruption: The adversary has access to the model. They can 
change the learning process and model parameters. Very hard to 
create counter strategies for this.

• Data access attacks: A subset or all the training data is illegally accessed
• Generate a substitute model that can be used to evaluate the 

effectiveness of potential inputs before submitting them to testing 
attacks.
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ML Models – Testing Phase

• Testing phase attacks are exploratory attacks that perform no 
tampering. 
• Goal is to evade proper classification by the model or 

collect information about the model or training data

• Evasion: The main goal is to solve an optimization problem to 
find a small input perturbation that creates a large change in 
loss, to trigger misclassification.

• Oracle: A malicious API is used by adversaries to present the 
model with inputs and to observe the outputs. These are then 
used to train a substitute model using the input-output 
mapping. 
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Output Domain

• Includes the output indicators and displays that provide 
predictions. Least influential TA.

• Uses in CPPS:
• Forecasting electricity demands
• Electric transmission ampacity
• Peak electric load

• Attacks:
• Label Manipulation: Flipping the label at the output 

device
• Regression Manipulation: Maliciously altering the 

predicted regression value at the output device

• Can be even more problematic if these ML pipelines are daisy-
chained. 
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model.

• Mis-classification: Alter output classification to degrade performance.
• Target attacks: Manipulate an input data sample to make the ML 

classifier predict it as a particular desired class
• Non-targeted attacks: Manipulate an input data sample to make the ML 

classifier predict it as any other class than the actual class.

• Types of attack models: White box, Gray box, Black box
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White Box
• Adversary has complete knowledge of an ML classifier like training 

algorithm, optimization approach, input data, and distribution

• Adversaries can use this information to analyze the vulnerabilities of 
the ML pipeline and attack at a point where they will maximize their 
error rate. 

• Very hard to defend against due to the adversary having complete 
knowledge

• Impractical



Gray Box
• Attack model where the adversary has partial or limited 

knowledge of the ML pipeline. 

• Can have access to model architecture, model parameters, 
magnitudes, training methods, loss functions, and data 
distributions, but not all.

• More practical for adversarial situations than white box 
attacks. 



Black Box
• Attack model where the adversary has no knowledge about 

the internal functionality of the ML pipeline. 

• Utilizes information about settings, inputs, and outputs to 
attack.

• Non-adaptive attack: The adversary can only access training 
data distribution, to train a local model. Then, approximate 
the model to the target model to learn its parameters.
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Black Box –
Cont. • Adaptive attack: The adversary can access an unknown trained 

model and feed random and adaptive input samples to label a 
carefully selected dataset.  Thereby gaining knowledge of the 
internal functionality of the unknown trained model.

• Strict attack: The adversary does not possess data distribution 
but can collect input-output pairs to get model mapping. They 
can’t change the input like an adaptive attack. 

• Most practical attack model 
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detection 
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vehicles)

Facial recognition 
systems
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Reliable Sign Detection



Examples of Adversarial Application in CPPS

• In CPPS Surveillance:
• Adversaries can manipulate CPPS surveillance sensors (temperature, humidity, state 

estimation) using injections or physical tampering.
• Introduce perturbations that make the ML classifier not treat it as an abnormal state 

when the recovered system state is different from the actual state
• In Electric Vehicle charging

• Adversaries can damage charging stations or install malware through the USB ports, 
which can cause data theft or a Denial-of-Service in EV charging. 

• Ex: Adversary can gain access to vulnerable charging stations by disabling the 
charger, causing a ripple effect on the rest of the power grid. 



Protection against Adversarial Attacks
• Adversarial attacks are difficult to detect due to:

• Adversarial Examples Crafting Model: Creating adversarial samples involves complex 
optimization. Due to the unknown nature of this optimization, defensive 
mechanisms are typically ineffectual. 

• ML models require input-output pairs: Modifying ML models to be resilient against 
adversarial attacks can change the objective of the model, hampering reliability, 
performance, and usefulness.



Current Protection Solutions
• Adversarial Training: Model robustness is increased by injecting adversarial examples 

into the training data. The target model is trained with both real and perturbed samples.

• Gradient hiding: To protect against attacks that target gradient optimization, like FGSM, 
essential information about the model’s gradient can be hidden or encrypted as a 
countermeasure. 

• Defensive distillation: An ML model gets trained to classify samples as either “hard” or 
“soft” labels. The “soft” outputs get sent to another ML classifier as input, trained on the 
same input samples. The second “distilled” model provides a smoother output, more 
robust to adversarial attacks. 
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the data, to make adversarial perturbations disappear due to low sensitivity.

• Defense-GAN: Provide protection by using a Generative Adversarial Network (GAN) to 
reduce the efficiency of adversarial perturbations

• MagNet: Using ML classifiers as a black box to read the output of the classifier’s last 
layer, without modifying the classifier. Then, use detectors to discern between normal 
and adversarial samples. 
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Conclusion
• In this presentation, we have illustrated:

• Vulnerabilities that exist within ML algorithms in CPPS.
• Adversarial attacks and how they can manipulate the vulnerabilities.
• Different TAs that exist in the ML pipelines and how they can be compromised using 

various attacks. 
• Various attack models for adversarial attacks
• Real-life examples of conducting adversarial attacks
• Current protection strategies that exist.

• Defense against adversarial attacks is still a wide-open research area.
• Current methods show promising signs but can still be circumvented by adversaries and 

put our critical CPPS at risk. 
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