







#### Introduction

- Program Director, Computer Networking & Cybersecurity
- Professor
- Cybersecurity Research Center Director
- Certifications: CCIE Enterprise, CCNP, CISM, AWS, VMware, CEH, Linux
- Teaching Focus: Cybersecurity, Networking, Capstone courses
- Research Interests: Cloud Security, Zero Trust, Workforce
  Development in Cybersecurity





How familiar are you with AI Applications in Cybersecurity?

Please share your response! ©

A. Very Familiar

B. Somewhat Familian

C. Not Familiar At All







## **Complex Threat Landscape**

- •Data Volume: Massive data sets challenge real-time analysis.
- •Attack Speed: Rapid execution leaves minimal reaction time.
- •Complex Patterns: Evolving threats bypass traditional detection methods.



#### **Al in Action: Business Context**



The rapid growth of IoT devices has created new security challenges for organizations



IoT networks generate massive volumes of traffic data



Traditional manual analysis is no longer feasible



Real-time detection of threats is crucial for network security



Attackers increasingly target IoT devices for botnets and data theft





Our Goal: Use a dataset (RTloT 2022) to train a machine learning model to automatically detect malicious network traffic in real-time IoT environments.

### **Dataset Description**





- The RT-IoT2022 Dataset is a collection of realworld network traffic data from IoT environments.:
- Size: 123,117 network traffic samples
- Features: 85 network traffic characteristics
- Types: Mix of normal and attack traffic patterns
- Source: Real-world IoT infrastructure data
- Attack types: DDoS, ARP poisoning, and Symposium malware
- **Key Features Include:**
- Protocol types
- Service types
- Flow duration
- Packet statistics
- Network behavior patterns









Prepare Data for Training

separate features (X)

from Target (y),

splits data:

80% for

training, 20%

for testing





Implemented

supervised ML



# **Evaluate the Model**

Makes predictions on test data, show accuracy of

overall correct

predictions





#### **Random Forest Classifier**

- Works by creating multiple decision trees (forest).
- •Each tree makes a prediction (votes)
  - •The final prediction is the majority vote from all tree



#### **Evaluating Effectiveness**

**99.7% Accuracy** in identifying anomalies.

