In-Browser Cyber Security Labs Dr. Junjie Zhang Associate Professor Dept. of Computer Science and Engineering #### Who Are We? #### Wright State University - Two campus - o Main Campus, Dayton, Ohio - Lake Campus, Celina, Ohio - Total Enrollment as of Sep. 23 - 0 11,036 #### Dept. Of Comp. Sci. and Eng. - Undergraduate (B.S.) - o CS, CE, and IT & Cyber - Graduate (M.S.) - CS, CE, Cyber Security, Cyber Security with Cyber Defense Concentration, and Data Science Osium - Graduate (Ph.D.) - CSE #### Active Collaboration with CAE Institutions ## Our Featured Cyber Security Courses - Cyber Network Security - Host Computer Security - Information Security - Security Attacks and Defenses - Reverse Engineering and Program Analysis - Trustworthy Machine Learning All are offered in the flexible mode (i.e., with an built-in online mode) # Challenges for Online Cyber Education Variety and Heterogeneity of Experiment Environments Collaboratively editing, commenting, and debugging Context Switching and Cross-Referencing ### **Our Solutions** - · Building cyber security labs, when applicable, using Google Colab. - Executable Python Code Rich Text (image, html, and latex) - o Online Collaboration (sharing, commenting, and chatting) Sium # Facilitating Online Cyber Education Zero-Deployment Efforts – Everything is inside your browser. Synchronous and Asynchronous Online Collaboration – Collaboratively developing and editing using Google's platform. Text, comments, and code are all in one place – An interactive programming notebook ### Setting Up Cyber Security Labs in Colab - Create a new notebook - Install required packages - Write your demo/lab/project description and code samples/skeletons. - You may want to download datasets automatically from a public repository instead of asking students to upload them manually. #### Our Colab-based In-Browser Labs - Network Security - Trustworthy Machine Learning - Reverse Engineering and Program Analysis Symposium ## **Network Security** - Packet Parsing - Network Traffic Analysis and Visualization - Traceroute Visualization - Cryptography ### Network Traffic Analysis and Visualization #declaring empty lists with the below variable names timestampList,srcAddressList,dstAddressList,domainnameList = ([] for i in range(4)) #traversing through each packet for packet in networkpackets: #check for DNS laver if packet.haslayer(DNS): dst = packet[IP].dst src = packet[IP].src #check for query if packet[DNS].qd: domainname = packet[DNS].qd.qname #converting time from string to timestamp timestampList.append(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(packet.time))) srcAddressList.append(src) dstAddressList.append(dst) domainnameList.append(domainname) #converting the above lists to dictionary dict = {'timestamp': timestampList, 'SrcIP': srcAddressList, 'dstIP': dstAddressList, 'name': domainnameList} #dictionary to dataframe df = pd.DataFrame(dict) #dataframe to csv file df.to csv('pcap.csv'.index=False) Data Visualization ``` [] #count plot for SrcID ax = sns.countplot(x = 'SrcIP', data = df) g = ax.set_xticklabels(ax.get_xticklabels(), rotation = 90) 4000 3500 3000 1500 1 ``` ### Trustworthy Machine Learning - Gradient-Based Adversarial Attacks and Defenses - Backdoor Attacks and Defenses - Adversary Reprogramming - Membership Inference Attacks and Defenses - Etc. #### Gradient-Based Adversarial Attacks #### **Feature Collision Attacks** #### **Hidden Trigger Backdoor Attack** Using feature collision to generate poisoning samples with hidden trigger – select an input x_c with a base label (c – such as frog) and an input x_t with a target label (t – such as airplane), and then add the trojan trigger ε to the target sample $$\widehat{x_t} = x_t + \varepsilon$$ After than, we can find a poisoning sample \hat{x} by computing | #Poison | | | | |------------|------------|------------|-----------| | 50 | 100 | 200 | 400 | | 0.988±0.01 | 0.982±0.01 | 0.976±0.02 | 0.961±0.0 | | 0.555±0.16 | 0.424±0.17 | 0.270±0.16 | 0.223±0.1 | | 0.605±0.16 | 0.437±0.15 | 0.300±0.13 | 0.214±0.1 | Poisoning sample encoding trigger First row, clean data Second row: naïve backdoor attack Third row, hidden trigger backdoor WRIGHT STATE UNIVERSITY #### Feature Collision Attacks ``` [] def gen one poisoned sample (one base instance, one target instance, model, beta): # It is worth noting that this model is ready for the inference mode and it has already been hooked. output target = model(one target instance) fc1 target = layer outputs ['fc1'] x = torch.rand like(one base instance, requires grad=True) x = torch.nn.parameter.Parameter(x, requires grad=True lr = 0.01 optimizer = torch.optim.Adam([x], lr=lr) epochs = 100 for i in range(epochs): output x = model(torch.clamp(x, 0, 1)) fc1 x = layer outputs['fc1'] loss = torch.linalg.norm(fc1 x - fc1 target) + beta * torch.linalg.norm(x - one base instance optimizer.zero grad() loss.backward() optimizer.step() x = torch.clamp(x, 0, 1).detach() with torch.no grad(): predict label = model(x) predict label = predict label.reshape(-1, predict label.shape[0]) , predict label = torch.max(predict label, dim = 1) return x, predict label.item() ``` ``` Trustworthy_Artificial_Intell × ○ A == https://colab.research.google.com/drive/1xLcIOSRQKAtxJ7bneELy51mXC + Code + Text ax[idx, 1].imshow(base temp[idx].squeeze(), cmap="gray") ax[idx, 1].set title("base") ax[idx, 1].axis("off") ax[idx, 2].imshow(generated X[idx].squeeze(), cmap="gray") ax[idx, 2].set title("classified as %d" % (generated X labels[idx])) ax[idx, 2].axis("off") plt.show() We have generated 359 qualified poisoned examples. classified as 5 ``` # Reverse Engineering and Program Analysis - Decompiling - Binary Emulation - Taint Analysis - Symbolic Execution - Vulnerability Detection ### Access to Our In-Browser Lab Samples - Follow my GitHub account jzhang369 - or <u>https://github.com/jzhang369/cybersecuritylabs/tree/main</u> - or send me an email at junjie.zhang@wright.edu OSiun #### **Thank You!** junjie.zhang@wright.edu WRIGHT STATE UNIVERSITY